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ABSTRACT

The current research presented the value of the lowest state energy for

(GaMn)As/GaAs Quantum Well by using the Schrodinger equation and
the localization landscape method, and a comparison between the
quantum confinement potential and the wavefunction localization of both
the landscape method and the Schrédinger method, a great match was
found between the two methods, where the Landscape method 0.1%
greater than Schrodinger method. From the Hamiltonian function
analysis, it was found that the quantum eigenvalues in the discrete wells
interact only when the corresponding eigenvalues are close to each other.
Localization appears clearly in the sub-regions of quantum well, so, we
prove damping in quantum wells, especially near the boundaries of the

Introduction

For the last years, the calculation of the electronic
structure of nanoscale semiconductors such as
quantum wells and quantum dots has received wide
and exciting interest, as knowing these properties
helps improve the performance and design of those
devices that vary according to their function, such as
light-emitting diodes and some semiconductor lasers
[1].

In order to modelling individual particle states of
quantum dots, wells, and even superlattice structures,
it requires solving the time-independent Schrodinger
equation for these systems that contain millions of
atoms, it is difficult to apply theory of standard
function density and use experimental models for this
huge number of atoms. Even if it can be applied, this
requires solving the problem of the large eigenvalue
of energy which remains an important numerical
requirement [2]. When calculating the characteristics
of the transmitter in its LED device, the numerical
potential doubles very largely, making the process of
self-numerical calculations more difficult.

In the 2012 year, [3] presented the concept of the
landscape function mathematically by solving the
function u in the form of Hu =1, since H is an
elliptical effect operator, and he demonstrated that
this function has the ability to predict the shape and
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well. The effective quantum potential W was determined.

position of the localization of the low-energy
eigenfunctions of the Hoperator. Whether the
localization was due to voltage disturbance or due to
field geometry, or both [4]. Recently, [6,5] developed
a landscape function theory that was originally used
to compute Anderson's localization, in order to
circumvent the problem of large eigenvalue
computations to obtain wave functions in-ground and
excitable states instead of solving the time-
independent Schrédinger equation [7,8].

Since then this method has been used in theoretical
and experimental physics to predict plate vibration
and the dual Laplace spectrum with Dirichlet
boundaries [9], to study the quantitative efficiency of
GaN light-emitting devices and the spectral properties
of the Schrédinger equation with the Anderson
potential within the specified range [10].

The research idea is summarized in the solution of the
equation Hu = 1, where His the Hamiltonian effect
in the time-independent Schrédinger equation
Hy; = E;p; , ¥ is the wave function for the state (i),
and E is the eigenvalue of energy. In order to
calculate the eigenvalue of the energy of the ground
state, as well as the wavefunction in Schrodinger's
equation, the problem of the large eigenvalue can be
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addressed through the Hamiltonian matrix, which
corresponds to the Heffect, which will be accurately
constructed depending on the basic electronic
structure.  This structure is for contrasting
semiconductor structures according to the k.p method
or effective mass approximations of the beam, where
the dimension of the matrix depends on the number
of atoms in the system. Where the landscape theory
divides the system into weakly connected sub-regions
to form areas of the spatial distribution of self-
vibrating shapes, which are derived from the value of
the eigenvalue of energy. Where it can reduce the
linear behavior of the system to knowing its patterns
of vibration, which means the functions and the
eigenvalues of the spatial differential factor
associated with the wavenumber itself [11].
According to this theory, the precise spatial location
of the quantum states in the potential well V/(r) can be
predicted using u(r) solution of the simplified
Dirichlet problem, which is called the localization
scene.

Theoretical Model

Localization phenomenon is defined as the
concentration of the system's eigenfunctions in a
small part of the surrounding original field and is
close to or equal to zero in the rest of the regions,
which leads to preventing its spread completely. The
wave localization occurs in all vibrating systems in
nature, starting with traditional mechanics and ending
with quantum mechanics, where it arises. In irregular
geometrical systems (weak localization) as well as in
disordered systems (Anderson localization).

There are several types of localization, each of which
exhibits a specific behavior. First: When it is caused
by the irregular geometry of the vibration field, here
it is classified as weak localization characterized by a
slow decay of the amplitude pattern away from its
generating region. Secondly, it can arise due to a
dampening disturbance in the system which is called
the localization of Anderson who discovered it in
1958 [12]. The amplitude decay pattern moves away
from the region of its generation where there is strong
localization. Finally, there is localization that differs
from high-frequency localization in specific domains
possessing stable orbits such as ball bounce mode
[13].

To investigate the localization of the wave function in
these structures, the carrier wave functions are
computed by solving the Schrédinger equation and
the landscape method. This method requires
knowledge of the potential energy of the well. The
present calculation of the carrier potential energy
includes band displacement effects between GaAs
and GaMnAs (see Figure 1).
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Fig. 1: illustrates a landscape method for the
potential energy of a GaAs quantum well, the
effective mass was taken in the calculations.

The state function u can be formulated on the basis of
the wave function y where H is the Hamiltonian
operator:

—~ 2
H==2V4V. ()

The landscape function can be defined by solving the
equation:
Hu = —%Vu+ Vu=1.......(2)
Ref. (12), shows that the sub-regions in which the
localization of the eigenfunctions delimited by the
valleys occurs in the Figure (2). This property is
obtained from the fundamental inequality satisfied by
the eigenfunction (y) of the Hamiltonian influence
with the eigenvalues of energy whose amplitude is
equal to one.
()| < Eu(@) o vev e e e (3)
In the other formulation, the small values of (u(r))
along the valley lines restrict the amplitude of the
function (y) to be small on the same lines, and
therefore the lowest energy eigenfunctions reside
within the regions surrounded by these lines, and thus
the Landscape (u) gives a division of the field into a
set of sub-regions that Each one determines the
localization the carrier.
Where u(r) s the landscape function in the quantum
well width, E is the energy eigenvalue.
The eigenvalue and its corresponding energies can be
determined from the function u itself from equation
(2). All details are available at [9].

The landscape function can be expressed by the
function u (r) on the basis of the eigenvalues of the
wave function y of the H operator:

(Auy = X @i (L) e e e e e e e e e (4)
Where:
a; = u|yY;) = [[fu@m)P;()d3r e cee e o (5)

Due to the self-adjacent condition of the Hamiltonian
H, a; (is expansion coefficient) can be determined by
the equation:

a; = (uly;) = Eii<u|H¢i> = Eii(1|¢i> e (6)
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Observing equation (6), it is showed that the
contributions of high energy states appear to be fake
of the wavefunction u and depends on factor 1/E;, so
if there is an energy interval between the ground
states i and the irritant (i+1), then many of these
states contribute to the expansion of the localization
scene, and this is not desirable because this leads to a
large difference in the ground state value of the wave
function when compared to that result by application
Schrddinger's equation.

In the case of a quantum square well, the wave
function is located in the sub-regions close to the
potential barriers as in the figure (1) and away from
the main areas inside the well because that results
from the strengthening of the less active quantitative
functions in those sub-regions.

In many cases, when we consider the radioactive
recombination within the voltage well of the vectors
in each sub-wave localization region, the value of u
can be estimated by:

() = %ﬁl)w;ﬂ.) = Y oo (7)

Where: |7*.) Is the general basic case in the sub-
region Qm Accordingly to the hypothesis [4], the
spread of u in the sub-region can be considered as:
(1|7 ~ ﬁ e (8)
By using equation (8), the ground state energy in the
sub-region can be approximated:

m _ fym| 5 pm\ o (A )
EP = @A) ~ S = e =

(a3

B NC)

W, w20
From equation (9) we can estimate the eigenvalue of
the ground state: u(r) = (rfu)

The landscape function u(r) is not only for
determining the ground state of energy and the wave
function but also for determining the effective
quantum confining potential W, where w=1/u. Where
the exponential decay of the localization status is
determined, starting from the sub-region towards the
barriers, to start a new concept called the tunnel.
Solution of localization landscape equation

The Schrodinger equation gives the ground state of
energy En the wave equation v in the form:

_%%d’(’f) + VP (x) = EPY(x) oo e (10)
=Tl (11)

x
T), 0<x<L....(12)

E; represent the ground state energy, ¥, (x) is the
wavefunction of n state.

By equation (11) and Concept of localization scene
theory according to Hilbert space we can get:

U= 2 APy e veeve v e (13)

By seen the equations (6) and (13), we can conclude
three main observations. Firstly, the quantum states
of low energy contribute more to u function than the
high energy states, secondly, in a certain sub-
localization region, the lower energy functions enter

98

TJPS

(i) In the analysis of equation (6) which is basically
the local quantum states of this sub-region, thirdly, in
each sub-region, the ground state has a shape similar
to a small protruding protrusion, while the higher-
energy state takes orthogonally, positive and negative
values, so that the numerical results become From the
equation (13) it almost fades away.

Note that this cancellation also occurs for non-
specified system states with high power. As a result,
substituting (13) by (Hu = E;u) we get:
Au=Y,E,anp, =1........(14)

And substituting (12):

> anElnz\/%sin (%) =1.......(15)

We can rewrite equation (15) as [14]:

4 o 1 . nnz\ __
;Znood;sm (T) =1..... (16 )
From above equations, a, equal to zero for even
value of n, but it taken odd value, where:

_ 2L
= pomg v e e (17)

So, from eq. (13) and eq. (17) we can get:
o V2L
@) = I7 4 aim ¥n (@)

22l oo Wam-1(2)
U(Z)zEl—anﬂLIZ

an

(2m-1)3
=n [1!)1(2) + 2—171#3(2) + éws(z) + ] e (18)
Where: n = z‘E_\/ﬂ . From equation (18) it is noticed
1T

that the series u converges for every 1/n’. This means
that the Landscape method gives a satisfactory
approximation of the ground state within the range [0,
L].

To calculate the value of ground state energy E7* for
a square one-dimensional potential well:

_ JuHudz _ 2nm2%€=1(2m1_1)4 _

EM = -
2 2
lul T e—

20V2L
g ...(19)

EM™ = 1.0210 E,

We notice that the ground state energy within the
range (0, r) is largely consistent with the result
obtained from solving the time-independent
Schrodinger equation, and it is greater than it by 9%.
Results and discussion

The numerical solution by Landscape method will be
compared to the time-independent Schrodinger
analytical solution, using tables and graphs as
comparison tools, and we will verify whether the
Landscape solution, which has been mathematically
constructed for the wavefunction, is physically
acceptable with regard to the energy of the ground
state of well width, with respect Equation (10) and
boundary conditions. The results obtained for the
lowest eigenvalues inside the potential well represent
the first family of what would be expected from the
effect of quantum well width on the lower energy
eigenvalue .

In numerical terms, we have seen more exponential
separation and decay than what mathematical
equations express. The approximate solutions
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generated through the Landscape method show the Figure (2) shows the localization landscape method,
energy  quantization  characteristic at  each where Figure (a) shows the limits of localization for
wavefunction with a slight error due to the calibration the function u, while Figure (b) represents the

of the Hamiltonian factor, and there is another landscape function u as solutions to the equation (2),
condition that the approximate solution must fulfill, (c) represents a two-dimensional view of the gradient
which is the continuity property for the range (0, r), of the bound states inside the potential quantum well,
where it appears that solutions are physically (d) represent the effective localization potential W for
acceptable, see Table.(1) the sub-regions shown in (a).
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Fig. 2: The localization landscape method: (a) the valley network with blue lines represents the localization limits for
the function (u), (b) the landscape function (u) represents the solutions of equation (2), (c) represents a two-
dimensional view of the bound states gradient inside the quantum potental well., (d) represents the effective

localization potential (W) for the sub-regions shown in (a) where W = u™.

Localization appears clearly in the sub-regions in the red dotted line. Ground states of Energy obtained for
quantum well, Therefore, we prove the presence of Localization Landscape via two different Method. is
decay in quantitative wells, especially near the given by the green and blue lines, see Figure (3),
boundaries of the well. By Comparing of the effective noting that up to this moment the resonance tunneling
potential of a square well with infinitely high was not taken into account, as it was found that there
potential bollards. The infinite square well potential is is a strong interaction between the eigenfunctions in
given by the Black line. The effective confining the separate wells when the eigenvalues are close.
potential calculated by the landscape is given by the
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Fig. 3: Shows a comparison between the possibility of quantum confinement and wavefunction localization for the
Landscape and Schrodinger method, it is clearly that there is a high congruence in the two methods, as the error rate

is approximately 0.1% between the two methods, width of the well is 50 A with infinite barriers.
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As presented from numerical and analytical solutions,
it clear that there is congruence with the exact
solution of the time-independent Schrédinger
equation (see Figure 4), but in order for the
Landscape solution to be physically acceptable, it
must achieve a state of quantization energy and thus
the emergence of bound states and wave localization
Inside the potential well, through the probability
density of the wavefunction which is related to the
quantization of energy, as in Figure (5).

25
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20

5 10 15 20 25 30 35 40 45 50
Well Width (A)
Fig. 4: Shows the lowest three states of energy
eigenvalue in a GaAs potential well, width of 50 A
surrounded by infinite barriers. It is clearly that all
three states appear coherent with decreasing energy
value during increasing the well width.
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Fig. 5: Shows the approximate solution and the
probability density of the wave function at the ground
state energy n = 1, for a single potential well (GaAs)
width of 10 nm.

While, Figure (6) Shows the wavefunction for the
first three quantum states of energy as a function of
the well width, as it is observed that the wave
function is decay continuously when increasing the
quantum well width, which predicts the need to
adhere to the limits of the quantum well to produce
the bound states that located inside the quantum well.
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\

0 10 20 30 40 50
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Fig. 6: The eigenfunctions of the ground state (n=1) and
the excited states (n=2,3), corresponding to the self-
energy states computed using the time-independent

Schrédinger equation.

In this and other Similar studies, the ground state
energy is the desired goal in all semiconductor
applications, as it is concerned with the stability of
the device's operation.

Table 1: A comparison between the landscape
method of localization and the Schrédinger method to
calculate the lowest eigenvalue of energy for a GaAs
potential square well, width 50A surrounded by
infinite walls. The effective mass was taken into

Schrédinger's equation, 0.067mQ.
Energy by SE | Energy by LLT | Well width | Index n
(eV) (V) (A)

22.503282 22.953348 5 1

5.625821 5.738337 10

2.500365 2.550372 15

1.406455 1.434584 20

0.900131 0.918134 25

0.625091 0.637593 30

0.459251 0.468436 35

0.351614 0.358646 40

0.277818 0.283375 45

0.225033 0.229533 50
Conclusions

In this work we applied the landscape method to
build a mathematical model for quantum
semiconductor devices. The Schrodinger equation
was replaced by the landscape equation whose
solution is called the (u) localization landscape. The
inverted (u) gives us the effective landscape
localization potential (W). We were able to provide a
good picture of wave function localization in a GaAs
potential well of finite width and surrounded by
GaMnAs infinite using the scene method and
Schrédinger's equation.

Landscape method provides a convenient method for
determining the decay of a quantum state far from its
point of origin. This decay corresponds to the tunnel
effect and is more common in quantum mechanics.
The results showed a great agreement between the
ground state energy E™ in the region (0, L) by
Landscape method and the exact solution of
Schrédinger's equation, it is about 1% greater than
(Ey) and it is acceptable from a physical point of
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view, especially with regard to the ground state
energy of the infinitely high potential well and the
limited width.

Calculation time is reduced with Localization
Landscape Method compared to the traditional
Schrédinger equation, making this model ideal for
simulating and designing quantum devices.
Nevertheless, we believe that this work is a profound
fundamental step towards explaining the localization
of all the values of the eigenvalues in the (1/u) sub-
regions strongly defined by [8,9]. The emission and
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