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1. Introduction
Let {X X5} be a sequence of integrable random

variable on a probability space (o F p)and
F. cF,.an increasing sequence of sub o — field of
F, X is F - measurable that is

XnZ(Q.F)%(RYB(R))'{anFn} is said to be
martingale iff wn,E[X |F ]=X, ae[l]

It E (¥ |P)<oolt’s said Y €L°(Q,F ,p)for P e[1,)
and the norm defined as :

1

1, ={E@r [ 12

James was the first one Who studied Birkhoff ’s
properties  of  orthogonality,  therefor  this
orthogonality is called Birkhoff- James.[3]

Ash proved that the martingale difference is
orthogonal in a Hilbert space | 2(q,F,p) by usual

orthogonality[1].

In 1934 Roberts introduced his orthogonality as
Roberts’s orthogonality and in 1935 Birkhoff
introduced his orthogonality as Birkhoff s
orthogonality , which was one of the most important
orthogonality senses in normed space . [4]

Singer’s orthogonality was introduced by singer in
1957. Therefor, the orthogonality of martingale will
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be discussed in normed space according to these
senses.[5]

A functional is a mapping { of an element in a

normed space | (Q,F ,P) toanelementin its scalar

field .

A functional is called linear when it satisfies,
g(@axX +bY )=ag(X)+bg( )

for every scalarsand x v <L?(Q,F,P)-[6]

We say that functional ¢ is bounded functional if

there exist scalar K > 0 such that

g <KX,

forevery X € L?(Q,F ,P)

The space of all bounded linear functionals on
LP(Q,F ,P) Iis called the dual space of L°(Q F P)
and denoted by L * .[6]

2- Main results

Definition(2.1)[7]

In a vector normed space °(Q,F,P), Z is called
Birkhoff — James orthogonal to W and denoted by
Z1lg Wif

|z +aw |, =]z .

for any real number a .

Theorem (2.2)[7]
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Let X and Y belongs to a normed space | P (Q, F ,P)
,then X 1z Y ifand only if there exist ¢ < L*\{0}

such thal jg 0 |= gl x|, -
Lemma(2.3)
Let E:LP(Q,F,P)—R be a conditional expectation

,then E is bounded linear operator.
Proof:
Since E (aX +bY |F)=aE (X |F)+bE( |F)
then E is linear operator and
”E(XI F )|| < IXll, that is E is
P
bounded by K =1

Theorem(2.4)
Let X eL”(Q,F,P)and (X ,F,)be azero— mean

martingale then X D G

Proof:

If g(X,)=EX,|F,) we

la (X )[=lg (X )],

g X)I=[E X, IF),

=|)X ,E@IF,)| (since X is F_- measurable)
n n/{lp n n

=[E @IF)(X ., (by property of norm)

=[E @R Xl

=[E 1%l

define

“loll, X,
Since |g(x,)|  =[g], IX. |, 39 E(X 1 F,)=0 .

X n J‘B X n+l

Definition(2.5)[8]

In a normed space " (Q,F ,P) , Z is said to be singer
orthogonal to W and denoted by 7 1w if either

[z, W, =0 Oz +w |, = [z -w{|, -

Theorem(2.6)

If E(| X,|7) < oo foralln, X, isa martingale and
independent if E(XP,IF, )= OfP e [, then

n+l

X n J‘S X n+l’

Proof:

X alls" X ol s =E QX DE(X )
=E[X °XFP.] (byindependence)

=E[E(X X 1l F,)]
=E[X7E(X 74|F,)]

(Since X nP is F - measurable).
=0

Therefor X, Hp I 0

n+1HP =
Hence x 0 dLs X
Definition(2.7)[4]
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In a normed space °(Q,F,P), Z is said to be

Roberts orthogonal to W and denoted by 7 LW
if the equality

HZ +al HP :HZ —aN Hp

holds for any real number ¢ .

Theorem(2.8)

If X, belong to a Hlibert space | (0 F, p) and
(X ,,F,)is a martingale then martingale differences

are orthogonale in the sense of Roberts.
Proof:

[X o =X ) +a(X =X )|
=E[X,, — X 0) +a(X, =X )]
=E[(X,, -X m—l)2 +2a(X,, =X )X, =X ) +az(x X nfl)z]
=E(X =X 0) + 20E[(X =X )X, =X I+ @B (X =X )*
:E(Xm—Xm_l)2+2aE[E[(Xm—Xm_l)(X —Xn_l)]\Fn]+a2E(Xn—Xn_l)z
=E(X, -X, P +20E[(X, X, E[X, - X F ]+EX, X )
Since X -X., is F . -measurable.
EIX, =X, JIF,]=X,-X, =0
(by property of martingale)
=EXX, X, ) +a®EX, =X )
:"xm —Xm_1||§+a2||Xn —Xn-1||§ (1)
Similarity

X =X ) =X, =X )
:"X m =X m—1||§ +0{2||X n =X n—l||i -(2)
From (1) and (2) we have,
10X o =X )+ (X, =X ),
=X =X ) —a(X, =X )],
(X m -X m—l) J-R (X n =X n—l)'

Definition(2.9)[9]
Let X, Y belong to a normed space L (Q),F ,P),

and m be a positive integer . Then X is said to be

orthogonal in the sense of Carlsson to Y and denoted

by

X 1.Y if and only if <
2

are real number such that

n

n

o |BX +nY "i =0

Where ¢, 3,7,

i“iﬂizziaiﬂ/izzoland iai:ﬁiyi =l

i=l i=l i=l

Theorem(2.10)

Let E (|X ) |P )<oo and X  be a martingale such

that  E(X,|F,)=0 ,VPe[loo) and

K =02..,Pthen X 1. X .
Proof:

iai H,BiXMl+7iX nHi :iai {{E(ﬁixn+l+yix ”)P}P}

Y {E[i@ NBX ) " (X n)K]}P

i=1
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( by binomial theorem)

Sa S om e

i=1

e {i(ﬁ VB PFEEIX PR X |Fn])}P

-1 K=0
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m P =
> {Z(i BT EX YEIX P Fn])}P
i=1 K =0

0

Since X nK is - measurable.

Hence X 1. X,

n+l
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