On S-normed spaces

Main Article Content

Shahen M. Ali
Laith K. Shaakir

Abstract

The study focused on expanding the concept of 2-normed spaces by developing a new definition ( -normed space), and the study concentrated on the convergent of sequences and Cauchy sequences in our definition, as well as some other branches such as linear transformation and contraction.

Article Details

How to Cite
Shahen M. Ali, & Laith K. Shaakir. (2019). On S-normed spaces. Tikrit Journal of Pure Science, 24(4), 82–86. https://doi.org/10.25130/tjps.v24i4.405
Section
Articles

References

[1] Gähler, S. (1965). Lineare 2-normietre Räume. Math. Nachr. 28(1-2):1-43.

[2] Gähler, S. (1965). Uber der Uniformisierbarkeit 2-metrische Räume. Math. Nachr, 28(3-4):235-244.

[3] Gähler ,S.(1963). 2-metrische Räume und ihre topologische Struktur. Math. Nachr, 26(1-4):115-148.

[4] Das, D.; Goswmai ,N. and Vandana. (2017). Some fixed point theorems in 2-Banach theorem and 2- normed tensor product spaces. New tends in mathematical science, 12(1):1-12.

[5] Hendra, G. and Mashadi. (2001). On finite dimensional 2-normed space. Soochow journal of mathematics, 27(3):321-329.

[6] Malĉeski, R.; Manova-Erakovic, V. and Malĉeski, A. (2016). Some Inequalities in Quasi 2-normed space Lp(μ), 0

[7] Elumalai, S.; Vijayaragavan, R. (2009). Characterizations of best approximations in linear 2-normed spaces. General Mathematics, 17(2):141-160.

[8] Sibel, E.; Hüseyin,C. (2015). Ward continuity in 2-normed spaces. Filomat, 29(7):1507-1513.

[9] Neeraj, S.; Bhaattacharya, S., and Lal, S. N. (2010). 2-normed algebras-I. Publication de l’institut mathématique, 88(102):111-121.

[10] Hendra, G. and Mashadi. (2001). On n-normed spaces. IJMMS, 27(10): 631-639.