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1. Introduction
One of the important issues in environmental systems
is the effect of infectious diseases in addition to the
environmental point of view. Therefore, researchers
and environmental scientists attach great importance
to the development of an important tool along with
the experimental environment and described how the
disease spread in population and transformation from
susceptible to infected population. When diseases
spread in populations, communities with other
species in the same space compete for food, survival
and predation. For example, when a bounty was
placed on natural predators such as cougars, wolves,
and coyotes in the Kaibab Plateau in Arizona, the
deer population increased beyond the food supply,
and then over half of the deer died of starvation in
1923-1925 [1]. Because no type of population can
survive alone, researchers have provided many
studied in describing interaction among populations.
The first to describe in modern mathematical ecology
was done by two researchers Lotka and Volterra, they
describe the competition between prey and predator.
But the most of models that involved the injury of
one population species were originated from classical
action of Kermack and McKendrick [2]. After these
two wonderful works, the door become open for
researchers to offer many studies in epidemiology
and environmental science theory. Even in the last
few decades, these models have become important
tools for analyzing and understanding the spread of
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I n this paper, the dynamic of prey predator model was discussed when

the relationship between them is functional response type Ill. In
addition, when prey exposure to the disease as nonlinear function. Also
the infected prey exposed to harvest as a nonlinear and as linear
function. The bounded and positive solutions, periodic, conditions of
equilibrium points and the stability were we discussed Some results were
illustrated in numerical simulations, and show we can use the linear
function of harvesting to control on the dices.

infectious diseases and controlling them. One of the
first studies of prey predator model with disease was
the study presented by researchers [3]. Many
researchers [4,5 ,6] studied those models with
diseases. [5,7,8, 9] they studied the role of disease in
destabilizing the system. Harvesting is one of the
means used to control disease and prevent its spread,
but this method should be used with great care
because misuse may expose species to extinction.
There are many studied on this, [10] studied
harvesting in prey predator model to form a
controlled environment while ensuring the survival of
species and continuation of harvest with controlled
disease. Continuous harvesting in prey predator
model in [9, 11]. The effect of harvesting as a
nonlinear function was studied in [13].

This paper is organized as follows: In section two, we
outline the mathematical model with some lemmas
about natural solutions. Also we study in this suction
the equilibriums points with sufficient conditions and
its stability. In section three we add the function of
harvesting as linear and other as nonlinear. Numerical
solution to illustrate the behavior of interacting
societies, that's in section four.

2.1 Mathematical Model
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wherex ',y and z ' > 0. Here x denoted to Susceptible
prey, y Infected prey while z predator. All parameters

dy Xy
oy W 3 greater than zero and denoted as follows:
dz X‘z
—- d
ot b
r Growth rate
k Carrying capacity
c Infection rate

p, | predation rate of susceptible predator

S, | The growth rate coefficient of predator due to its interaction with the susceptible prey

The half saturation constant.

. | Natural death rate of infected prey

olo|T

, | Natural death rate of predator

Lemma 1. All solutions of (1.1) inR % are uniformly
and bounded

Proof
LetM (t)=x({t)+y(t)+z(t),
dm _dx dy dz Xthen

™
a7 Ta e
2

aMm X
— < (r+uX —-r—
m (r+u) ”

dﬂ<L(r+ V2, say v
at ars M '
Then,

0<M (x(1).y ()2 (1) < (@-e™)+(x )y t).2 ) 0
U
Lemma 2. |fﬂlgd2 then limz(@t)=0

Proof.

2
then _BX <d,Assume g <d,_
b+x2  ?

Then 92 _ptherefore  limz (t)exist  and

dt Z 5o
nonnegative. We suppose
limz@)=08 t—>o0, then Jp>0such that

limz@)=past —o00,p >€,

Let X 2 be the max positive constant such that for
t >1t,. Now x?t) < maxx?
JANO)
z(t):z(to)exp_([[t)i)(z(s)—dz}is
Bx*(s)—bd, —d,x*(s) s
b +x2%(s)

d, - 2 bd
(= A maxibdyye 3o as b

z(t):z(to)expj[

2O =z() exp-(C—— "~

Its contradiction, then |imz (t) =0

Lemma 3. In the absent of predator the subsystem
has no periodic orbit in R%
Proof:

Let H :i,hlzm(l—ij—ciandm:c Xy -d,y,

Xy k X +Yy X+y
h,,H h,,H
thenA(x,y):a( L )+6( 2! ):7L<0.
OX oy ky

Therefore, no periodic solutions.

Lemma 4: In the absent of infected prey the
subsystem has no periodic orbit in R.

Proof: As in lemma 3.

2.2 Equilibrium Points and Stability.

There are five equilibrium points in system (1.1) as
follows:

1. The trivial equilibrium pointg (0,0,0).

2. Second equilibrium point when no infected prey
and no predator g, (k,0,0), in this case prey growth

exponentially to the carrying capacityk according to
Logistic equation.

3. Third equilibrium point when the system content
only prey, E, (x,y,0) where

Xf:k(l_(c—dl)]’yf:(c—dl)xf, with
r d,

condition

r>(c-d,)-

4. In absent of infected prey (The disease free
equilibrium point) the equilibrium isES(x‘,o,z),
where

X =

d,b 2=L(l_1] bs, X
(ﬂ1_d2)] ﬂo X k (ﬂ1_d2)
5. In the case of all population coexist, the fifth

equilibriumisg, (x*,y*,z"), Where

x*=\/7dzi,y*=C7d1X*,z’:[r[l—x—*j—ﬂ}w
(ﬂl_dz) d1 k X ﬂox
The Jacobean matrix of system (1.1) is
[of, of, of, ]
x oy oz
of, of, o, , Where
x oy a
6f3
oy

a5 a5
| OX

oz |
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d_pxy o By oA gt A
x ﬂo(b+xz)2 C(x+y)z'8y T4yl e ﬁ°b+x2
af? y2 2 Xz afz
—Z=c —Z= -d,, =% =
ox x +y)* oy (x +y)? oz
oy 2bzx %_ x?
6x_ﬁ1(b+x) - ﬂ1b+x a.
Now by using this matrlx we get the following
1. The trivial equilibrium point give
A =r>01,=-d,<0,4 =-d, <0, thus this point is
saddle.
2. Equilibrium  E (k,0,0)also  saddle  because
kZ
A =-r<04 =c-d, >0, :ﬂl
' 5=k
3. Characteristic equation of E, is

2*+A2*+BA+C =0, Where
A=—(y+ Ju+is)=Arcd
B =Judatinlntiuls -
C =_j11j23j33

TJPS

(c?—cd,)

d,b
2bﬁ1 r—r /Bl_dz _
(1+c—d,)

,dlyjzlzﬂ[bJr dzb JL K
‘UA

And other elements equal to zero. The characteristic
equation near the interior equilibrium point is

AB+AIP+BA+C =0

A= _(jn + jzz)

B = _(_j11j22 + j12 - j13)

C= _(_j12j21 - j21j31j22)

Then from Routh Hurwitz criteria, this point is stable
if A>0C >0 AB -C 0.

Lemma 5. The equilibrium E ,is global stability in
the first positive cone.

Proof. Since E, is locally asymptotically stable then
we choose a Lyapunov function as follows

w (x,,y,z):Cl(x X =x" In%]+czy +C,z

And dw X —x"
[k €-0) d)] o 1( 2 jdx +C,dy +C.dz
. (c—dl)z[ (c—dl)] S r
jy=-r+20-d)- Kk == o= = fo— dw n Bxxe Xy
d, r c d Bk Ao 0 JRAND A
b+[k k(cr)] . ' kx+kx e +Cx+y y-(8- ﬁl) -d,2 <0
[k L Ld) )] This point is stable if this condition satlsfled,
jz1:(C7d1) ' jzzzﬁ 1 Jzz ﬂlirz_dz * rXZ X * Ib)OX *XZ X*y
c c b [k-k(c’dl)j X +—X>X +—X + 2 +C
r b +x X +Yy
Then from Routh Hurwitz criteria, this point is stable 3. The Model with harvesting
ifa>o0c >o0and AB —C >0 Now the model with harvesting as follows
4, The elements of Jacobean matrix near dx -~ (1_7) 8 x’z Xy
e ~ - - 0 2
E, (X .0, Z) are equal to zero except the following: dt Xty 2.1)
Z]db dp d dy - Hy —d,y
Lo 77I’ r 7L i N T -V = - -4
Ju=r K \Iﬁl : (\/ ap k)(b+ﬂlfd1)y Jw==h B’ Jz=c-d, dt X +y
5, —d
1~y = —d A
- 20 dt ﬂl X
g L VA Where H (y) is the function of harvesting, such that
bo b[ﬁbﬁld] if H(y) linear function then H(y)=hy or
It's stabile if satisfied Routh Hurwitz criteria. H(y)=—Y_when its nonlinear function [16] . In
5. Equilibrium point E;= (x",y",z") pty
The elements of Jacobean matrix in this case are case of linear the equilibrium point is
d,b
Where P o-d,) Where - _ Lzbd condition g, >d,
Ju=|1-5+(2+5,) m ricd1+c—d2 ’ n —d, ) .
z, = r—m—# b+xi y _c-di-h,.
) (c2+dzz+c—dz—2cdz)2 o —pd, . (c+dl+c —dQ—chz)Q k X\+Y: ) BoX Ot d,+h
1122{—7 p=—]" 12120—2
d; A, dy and
The stability in this case
. 2X; Xz, 2 . X2 . X;?
Ju=r- kl_ﬂo 1*212 -C *yl *thzzcﬁ’Jw: ﬂ0b+X
(b +x,?) (xl+y1) (xl+y )
. y.2 x;? . bx;z; . ;2
Ju=C—— : —7 12 =C— : zfdlfhl Jn=5 1*21 =B - 27d2
(x+y;) (xi+ys) (b+x7) ( +X1)
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A +AA*+BA+C =0 Where x;:xl':x*

A=—(ju+1ix+lis) X Q-4d,B L. . . .
B = (ks + sk * I dis = (o das + JioJor) S I
C = (_juj22j33 + j12j21j33 + j13j31j22) Q>4dy with condition

Then from Routh Hurwitz criteria, this point is stable And Z; = ZI =77
if A>0C>0 andaB-c>o0

When H(y) nonlinear function then in this case then
the equilibrium pint

B =(x3,¥5.2;)

The Jacobean matrix is

_ x5 2bx;z;5 e ys? e X2 C_ %
Ju K By (b+X2’2) (X2°+y£)2, J (x2‘+y_2‘)2, Jis ﬁ0b+X2'2
O 2 L—d i lg Xz X 32 4
Jz c(x; +y2.)2* J2 C(x2'+y£)2 g =4 (b +—X;2)2 e =h (b+X£2_)2 2

The characteristic equations of this point is eliminate the disease and it's useful to predator,
A 4AAZ4BA+C =0, Where A =—(j +j, + jx) predator population growth up with prey, figure 2.

C=- juj22j33+j12j21j33+j13j31j221 B:j11j22+j11j33+j22j33_ 3,‘ ‘ ‘ ‘ ‘
Then from Routh Hurwitz criteria, the boundary point

isstableif A>0C >0 2f Predator

and AB -c >0 A

4. Numerical Solution ’ prey

In this section, we employ Mathematic Programing to o

show the behavior of each populations of the system infected proy

without harvesting also with harvesting. After many b

attempts and after commitment with conditions of s 200 oo o T
existence and stability of equilibrium, we fixed the Fig 2

parameters as

I o B _osand b =0.5. Finally, the linear function of harvesting with same
r=k =P ’_1'_/30’0‘5>ﬁi’0‘4’d1’0'14'd2’0‘16'°’0'3 ' parameter, we obtained same result but the different
The initial values are x =0.9,y =0.4 andz =0.6. s the predator disappears slower than the nonlinear
First we show the behavior of system (1.1) ended to function of harvesting, figure 3.

coexist prey and growth the infected prey, while ‘ ‘ ‘
predator disappearance, figure 1.

; ; [ Predator 7
i Prey
Infected Prey K

10

08 + Predator
/ -5} Infected Prey
06 1 i
Prey
0 2000 4000 6000 8000

04 1 :

‘ ‘ ‘ ‘ ‘ Fig 3

(0] 2000 4000 6000 8000 . . .

Fig 1 Now we can say, use the harvesting (linear function)

) ) to control to the disease and not to transform to
Now we employ the harvesting to show the effect this  epidemic. The optimal harvesting may be use the
on the behavior, this in two case. First, when the nonlinear function at least in such model.

function of harvesting is nonlinear. Put the parameter
h =0.08, we show the harvesting help us to
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