Weakly Nearly Quasi Prime Submodules

Main Article Content

Hero Jumaa Hassan
Haibat K. Mohammad Ali

Abstract

In this paper, all rings are commutative with identity, and all R-modules are unitary Left R-modules. We introduce the concept WNQP submodule as new generalizations of weakly quasi prime submodule and give basic properties, examples and  characterizations of this concept.

Article Details

How to Cite
Hero Jumaa Hassan, & Haibat K. Mohammad Ali. (2022). Weakly Nearly Quasi Prime Submodules. Tikrit Journal of Pure Science, 27(4), 95–99. https://doi.org/10.25130/tjps.v27i4.41
Section
Articles

References

[1] Barbooty, W. K., (2013), “Weakly Quasi Prime Modules and Weakly Quasi Prime Submodules”, M. Sc. Thesis, University of Tikrit.

[2] Behboody, M.and Kooli, H., (2004), “Weakly Prime Module”, Vietnam Journal of Math., Vol. (32), No. (2), pp. (185-195).

[3] Haibat, K. M. and Mahmod, S. J., (2020), “WAPP-Quasi Prime Submodule and Some Related concepts” , Ibn Al- Haitham Journal for Pure and APP,Sci. 34(2),pp. (56-69).

[4] Haibat, K. M. and Radeef, S. A., (2020), “WPQ-2-Absorbing Submodules and Related concepts”, Journal of Al-Qadsiyah for Computer Sci., and Math. 12 (2), pp. (87-96).

[5] Payman, M. H., (2005), “Hollow Modules and Semi hollow Modules”, M. Sc. Thesis, university of Baghdad.

[6] Goodearl, K. R., (1976), “Ring Theory, Non Singular Rings and Modules”, Marcell Dekker, New Yourk.

[7] Kasch, F., (1982), “Modules and rings”, Academic press, London.

[8] Dung, N. V., Huynh, D. V., Simth, P. I. and Wishbauer, R., (1994), “Extending Modules”, Pitman Research Notes in Math. Sci., Longman.

[9] Anderson, F. W. and Fuller, K. F., (1992), “Rings and Categories of Modules”, Springer Verlag New Yourk