Mixed Ligand Complexes of Hg-tetrazole-thiolate with phosphine, Synthesis and spectroscopic studies.
Main Article Content
Abstract
Seven new complexes [Hg(k1-ptt)2](1), [Hg(k1-ptt)2(dppm)](2), [Hg(k1-ptt)2(dppe)](3), [Hg(k1-ptt)2(dppp)](4), [Hg(k1-ptt)2(dppb)](5), [Hg(k1-ptt)2(dppf)] (6), and [Hg(k1-ptt)2(PPh3)2] (7) have been synthesized and characterized. The reaction of two moles equivalent of 1-Phenyl-1H-tetrazole-5-thiol (Hptt) with one mole equivalent of Hg(oAc)2.xH2O in ethanol solution afford [Hg(k1-ptt)2] (1). Treatment of (1) with one mole equivalent of diphos (diphos : dppm, dppe, dppp, dppb, dppf) or two moles equivalent of PPh3 afforded a complexes of the types [Hg(k1-ptt)2(diphos)] (2-6) or [Hg(k1-ptt)2(PPh3)2] (7). The prepared complexes have been characterized by CHNS elemental analyses, molar conductivity, IR and NMR (1H, 13C and 31P) spectroscopy. In all complexes, the ptt- ligand is bonded through the sulfur atom of deprotonated thiol group, whereas the diphosphine ligands bonded as bidentate chelating and PPh3 bonded as a monodentate, to afford a tetrahedral geometry around the Hg+2 ion.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Livage, J. (1988) ‘Sol-gel processing of transition metal oxides’, Solid State Ionics, 26(2), p. 144.
[2] Whitcomb, D. R. et al. (2005) .Optical properties of nanoparticulate metallic silver in photothermographic imaging materials. J. Ima. Sci. Tech. , 49(4), pp. 370–380.
[3] Araki, T. et al. (1997) .NEXAFS Spectroscopic study of organic photographic dyes and their adsorbed states on AgCl and AgBr. J. Phy. Chem. B. 101(49), pp. 10378–10385.
[4] Moderhack, D. (1998) .Ring transformations in tetrazole chemistry. J. fur Prak. Chem. /Chem. Zei., 340(8), pp. 687–709.
[5] Huisgen, R. et al. (1960) .Die Bildung von 1.3.4-Oxdiazolen bei der Acylierung 5-substituierter Tetrazole. Chem. Ber. 2324(9), pp. 2016–2124.
[6] Bharty, M. K. et al. (2015) ‘Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Co(II) complexes of 1-phenyl-1H-tetrazole-5-thiol: Synthesis, spectral, structural characterization and thermal studies’, Polyhedron, 88, pp. 208–221.
[7] Soylak, M., & Topalak, Z. (2015). Enrichment-separation and determinations of cadmium (II) and lead (II)-1-phenyl-1H-tetrazole-5-thiol chelates on Diaion SP-207 by solid phase extraction-flame atomic absorption spectrometry. Arab. J. Chem., 8(5), 720-725.
[8] Liu, G., & Zhang, S. (2016). Crystal structure of bis (1-methyl-1H-tetrazole-5-thiolato) mercury (II). Zeitschrift für Kristallographie, 231(2), 479-480.
[9] Kim, Y. J. et al. (2003) .Reactivity of di (azido) bis (phosphine) complexes of Ni (II), Pd (II) and Pt (II) toward organic isothiocyanates: synthesis, structures, and properties of bis (tetrazole-thiolato) and bis (isothiocyanato) complexes. Dalton Transactions. (17), pp. 3357–3364.
[10] Li, Y. et al. (2012) ‘Three Co II/Co III complexes with a 1-substituted tetrazole-5-thiol ligand’, Journal of Coordination Chemistry, 65(20), pp. 3665–3673.
[11] Song, J. F. et al. (2017) ‘Five new complexes based on 1-phenyl-1H-tetrazole-5-thiol: Synthesis, structural characterization and properties’, J. Mol. Struct. 1129, pp. 1–7.
[12] Shakhatreh, S. et al. (2012) ‘Study of copper(I) heteroleptic compounds with 1-phenyl-1, 4-dihydro-tetrazole-5-thione and triphenylphosphine’, J. Coord. Chem. 65(2), pp. 251–261.
[13] Wang, Y. L. et al. (2006) ‘Syntheses and characterizations of two palladium(II) complexes of 5-mercapto-1-methyltetrazole’, Zeitschrift fur Anorganische und Allgemeine Chemie, 632(1), pp. 167–171.
[14] Taheriha, M., Ghadermazi, M. and Amani, V. (2016) ‘Dimeric and polymeric mercury(II) complexes of 1-methyl-1,2,3,4-tetrazole-5-thiol: Synthesis, crystal structure, spectroscopic characterization, and thermal analyses’, J. Mol. Struct., 1107, pp. 57–65.
[15] Gómez-Zavaglia, A. et al. (2006) ‘Molecular structure, vibrational spectra and photochemistry of 5-mercapto-1-methyltetrazole’, J. Mol. Struct., 786(2–3), pp. 182–192.
[16] Nalbandyan, V. and Novikova, A. (2012) ‘Structural chemistry of A2 MX4 compounds (X = O, F) with isolated tetrahedral anions: Search for the densest structure types’, Acta Cryst. Sect. B.,, 68(3), pp. 227–239.
[17] Popova, E. A., Trifonov, R. E. and Ostrovskii, V. A. (2012) 'Advances in the Synthesis of Tetrazoles Coordinated to Metal Ions’, Chem Inform, 43(6).
[18] Raper, E. S. (1985) ‘Complexes of heterocyclic thione donors’, Coord. Chem. Rev. 61, pp. 115–184.
[19] Yang, Y. et al. (2012) ‘High-connected strategy of polyoxometalates towards model of core-shell nanostructure’, RSC Advances. 2(16), pp. 6414–6416.
[20] Seyfi, S. et al. (2018) ‘Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes’, Spectrochimica Acta - Part A: Mol. Biomol. Spect.. 190, pp. 298–311.
[21] Ilie, A. et al. (2011) ‘Metallophilic bonding and agostic interactions in gold(I) and silver(I) complexes bearing a thiotetrazole unit’, Inorg. Chem. 50(6), pp. 2675–2684.
[22] Singh, R. and Rao, R. S. S. (1981) ‘Synthesis and characterization of divalent manganese, cobalt, nickel, copper and zinc complexes with nicotinic acid’, J. Mol. Struct. 71, pp. 23–30.
[23] Tobias, R. S. (2009) ‘Infrared and Raman Spectra of Inorganic and Coordination Compounds (Nakamoto, Kazuo)’, J. Chem. Edu. 56(5), p. A209.
[24] Müller, A., Baran, E. J. and Carter, R. O. (2007) ‘Vibrational spectra of oxo-, thio-, and selenometallates of transition elements in the solid state’, Spectra and Chemical Interactions. Springer, pp. 81–139.
[25] Nonoyama, M., Tomita, S., & Yamasaki, K. (1975). N-(2-Pyridyl) acetamide complexes of palladium (II), cobalt (II), nickel (II), and copper (II). Inorg. Chim. Acta, 12(1), 33-37.
[26] Amr El-Sayed, M. F. and Sheline, R. K. (2003) ‘The position of the C-N stretching frequency in organic and inorganic molecules’, J. Inorg. Nucl. Chem., 6(3), pp. 187–193.
[27] Lindsay, C. H. and Balch, A. L. (2005) ‘Halogen additions to bis(diphenylphosphino)methane complexes of palladium. Interrelationships of monomeric and dimeric complexes of palladium(II), palladium(I), and palladium(0)’, Inorg. Chem. 20(7), pp. 2267–2270.
[28] Al-Jibori, S. A., Abdullah, A. I. and Al-Allaf, T. A. K. (2007) ‘Mononuclear and heterobimetallic palladium(II) and platinum(II) complexes containing the mixed ligands N-(2-pyridyl or 2-pyrimidyl) acetamide and tertiary diphosphine’, Trans. Met. Chem., 32(3), pp. 398–406.
[29] Al-Janabi, A. S. M., Abdullah, B. H. and Al-Jibori, S. A. (2009) ‘Synthesis, crystal structure arid spectral studies of mercury(ll) complexes containing
the mixed ligands benz-1,3-imidazoline -2-thione, benz-1,3-oxazoline -2-thione.benz-1,3-thiazoline -2-thione, and diphosphine’, Orient. J. Chem., 25(2), pp. 277–286.
[30] Al-Janabi A.S. M., Abdullah B.H., and Al-Jibori S.A., (2009). Synthesis, crystal structure and spectral studies of mercury(II) complexes containing the mixed ligands benz-1,3-imidazoline -2-thione, benz-1,3-oxazoline -2-thione, benz-1,3-thiazoline -2-thione, and diphosphine Orient. J. Chem., 25(2):277.
[31] Al-Janabi, A. S. M. Ahmed, S. A. and Ahmed, S. A. O., (2017). Synthesis and characterization of mercury(II) mixed ligands complexes derived from 5-(4-pyridyl)-1,3,4- oxadiazole-2-thione with tertiary phosphines ligands kirkuk Univ. J. Sci. studies 12(2):9. [32] Al-Janabi, A. S. M. Jerjes, H. M. and Salah, M. H., (2017). Synthesis and characterization of new metal complexes of thione and phosphines Ligands Tikrit J. of Pure Science, 22(9): 53.
[33] Ahmed S. A. and Al-Janabi A. S. M., (2018), Synthesis, Spectroscopic characterization of Co(II), Ni(II) and Cu(II) complexes with 2-meracapto-5-(2,4-dinitrophenyl)-1,3,4-oxadiazole or 2-meracapto-5-((4-(dimethylamino) benzylidene)amino)-1,3,4-thiadiazole ligands, Orient. J. Chem.34(4):787. [34] Al-Janabi, A. S. M., Irzoqi A. A., and Ahmed S. A.O., (2016). Synthesis and characterization of mixed ligands cadmium (II) complexes with N-hydroxymethylsaccharinate and diphosphines, Tikrit J. Pure Science 21(3):54-60.
[35] Al-Jibori, S. A., Barbooti, M. M., Al-Janabi, A. S. M., Ali A.H., Sami N., Aziz B. K., and Basak-Modi S., (2017). Synthesis, characterization and thermal studies of mixed ligand mercury(II) complexes of N-hydroxymethylsaccharin (Sac-CH2OH) and phosphine or heterocyclic amine co-ligands, Research J. Chemical, 7(10):1-5.
[36] Al-Jibori, S. A., Al-Janabi, A. S. M., Basak-Modi, S., Mohamed, S. S., and Schmidt, H. (2015). Mixed ligand palladium (II) complexes of N-hydroxymethylsaccharin (Sac-CH2OH): synthesis, characterization and biological studies, Trans. Met. Chem., 40(8):917-921.