Structural and Optical Properties for TiO2 thin films Prepared by Screen Printing method

Main Article Content

Hiba A. Abdulla
Abdulla M. Ali
Khaleel I. Hassoon

Abstract

In this study, Structural and Optical Properties of titanium dioxide thin films are studied, TiO2 (Anatase) thin films were prepared by screen printing (SP) method. X-ray diffraction analysis showed that the structure of TiO2 films are polycrystalline and the lattice system is tetragonal. The main diffraction peak of TiO2 was (101) at 2θ=25.  The data of optical absorption indicated that TiO2 thin films prepared by SP have a direct optical band gap (about 3.1eV).  The data of reflectivity was also used to calculate the band gap and was around 2.95 eV

Article Details

How to Cite
Hiba A. Abdulla, Abdulla M. Ali, & Khaleel I. Hassoon. (2019). Structural and Optical Properties for TiO2 thin films Prepared by Screen Printing method. Tikrit Journal of Pure Science, 24(5), 76–79. https://doi.org/10.25130/tjps.v24i5.420
Section
Articles

References

]1[ Kavitha, Mrs. M.; Gopinathan, Dr. C. and Pandi,

P. P. (2013). Synthesis and characterization of TiO2

Nanopowders in Hydrothermal and Sol-Gel Method.

International Journal of Advancements in Research

and Technology, 2(4): 102-108.

]2[ Sanchez, C.V. H.; Enrique, C. and Lopez,

Y.C.M. (2014). Quantification of phase content in

TiO2 thin films by Raman spectroscopy. Superficies

Y Vacio, 27: 1665-3521 .

]3[ Mugundan, S.et al. (2015). Synthesis and

Characterization of undoped and cobalt-doped TiO2

nanoparticles via Sol-gel technique. Applied

Nanoscience, 5: 449-456.

]4[ Comert, B.; Akin, N.; Donmez, M.; Saglam, S

and Ozcelik, S. (2016). Titanium Dioxide thin films

as methane Gas sensors. IEEE Sensors Journal, 16

(24):1558-1748.

]5[ Abdel-Galil, A.; Ali, H. E and Balboul, M.R.

(2014). Influence of nanostructured TiO2 additives on

some physical characteristics of Carboxymethyl

cellulose(CMC). Journal of Radiation Research and

Applied Sciences, 7: 36-43.

]6[ Williamson, G. K. and Hall, G. K. (1953). X-ray

Broadening from field Aluminium and Wolfram .

Acata Metallurgica, 1: 22-31.

]7[ Chu, L. Q, Z.; Yang, J. P. and Li, X. (2015).

Anatase TiO2 Nanoparticles with exposed {001}

facets for efficient Dye-Sensitized solar cells.

Scientific Reports, 5:1-10.

]8[ Chengtu, Ch.; Huang, Y. S.; Huang, J. W.;

Chang, Ch. K and Wu, Sh. P. (2010). Amacroporous

TiO2 Oxygen Sensor for bricated using Anodic

Aluminium Oxide as an etching mask . Sensors,

10:670-683.

]9[ Thagarelu, K.; Annamalai, R and Arulndhi, D.

(2013). Preparation and Characterization of

Nanosized TiO2 power by Sol-Gel precipition Ronte.

International Journal of Emerging Technology and

Adranced Engineering, 3(1): 636-639.

]10[ Tauc, J.; Grigorovici, R and Vancu, A. (1966).

Optical properties and electronic structure of

amorphous germanium. Physica Status Solidi, 15:

627–637.

]11[ Mohan, R.; Drbohlavova, J. and Hubalek, J.

(2013). Water - dispersible TiO2 nanoparticles Via a

biphasic Solvothermal reaction method. Nanoscale

Research letters, 8:503: 1-4.

]12[ Saleh, A. F.; Jaffar,A. M.; Samoom, N. A . and

Mohmmod, M.W. (2014). Effect Adding PVA

Polymer on Structural and optical proportion of TiO2

thin films. Journal of Al-Nahrain University, 17(2):

116-121.

]13[ Ayieko, C.O.; Musembi, R. J.; Waita, S. M.;

Aduda, B.O and Jain, P.K. (2012). Structural and

Optical Characterization of Nitrogen-doped TiO2 thin

films Deposited by spray Pyrolysis on Fluorine

Doped Tin Oxide (FTO) Coated Glass Slides.

International Journal of Engineering, 2(3):76-72.