

Tikrit Journal of Dure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

α–almost similar operators

Amjad H. Abdul Majeed, Laith K. Shaakir

Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v24i5.421

ARTICLE INFO.

Article history:

-Received: 17 / 4 / 2019

-Accepted: 25 / 6 / 2019 -Available online: / / 2019

Keywords: α–almost similar, almost similar, unitarily equivalent, self-adjoint operator.

Corresponding Author:

Name: Amjad H. Abdul Majeed

E-mail:

amjadmath20980@st.tu.edu.iq

Tel:

ABSTRACT

The study focuses on α -almost similar operator which is a new concept of the operator theory and also some basic concepts related to the concept α -almost similar.

The study also defines a new concept called β -operator which is an expansion of the concept θ -operator and the relationship of this concept with the α -almost similar.

At the end of this research, we study some important relationships among similar, unitarily equivalent, and almost similar on the one hand and α –almost similar on the other.

Introduction

We denote $B(\mathcal{H}_1,\mathcal{H}_2)$ to the set of all bounded linear operators from a Hilbert space \mathcal{H}_1 into a Hilbert space \mathcal{H}_2 . if $\mathcal{H}=\mathcal{H}_1=\mathcal{H}_2$ then we denote $B(\mathcal{H})$ instead of $B(\mathcal{H}_1,\mathcal{H}_2)$. The operator $T\in B(\mathcal{H})$ is called self- adjoint if $T=T^*$ where T^* is the adjoint of T[1]. An operator $A\in B(\mathcal{H})$ is said to be isometric if $A^*A=I[2]$. If $A^*A=AA^*$ then A is called normal operator. And if $A^*A=AA^*=I$ then A is said to be unitary [3]. If $A^*=A$ and $A^*=A$ then A is said to be partially isometric, equivalently A^*A is projection (i.e. $(A^*A)^2=A^*A$) [4]. Clearly every unitary operator is isometric and normal.

Two operators $A \in B(\mathcal{H})$ and $B \in B(\mathcal{H})$ are said to be similar and denoted by $A \sim B$, if there exists an invertible operator X such that XA = B X (equvalently $A = X^{-1}BX$). If $A \sim B$, then A and B have the same: spectrum, point spectrum and approximate point spectrum [5].

Similarly, two operators $A, B \in B(\mathcal{H})$ are said to be unitarily equivalent and denoted by $A \cong B$, if there exists a unitary operator U such that UA = B U (equvalently $A = U^*B$ U)[4]. If A, B are similar normal then they are unitarily equivalent by fugled-Putnam theorem [6].

Let A, B are two bounded linear operators on $B(\mathcal{H})$. Then A, B are said to be almost similar and denoted by A $\stackrel{a.s}{\approx} B$ if there exists an invertible operator X such that:

 $A^*A = X^{-1}B^*B$ X and, $A^* + A = X^{-1}(B^* + B)$ X. The class of almost similar was first introduced by Jibril [7]. we have extended this concept to α -almost similar and demonstrated some different results.

An operator $A \in B(\mathcal{H})$ is said to be $\theta-operator$ if A^*A commutes with A^*+A . The class of all $\theta-operator$ in B (\mathcal{H}) is denoted by θ . The class of $\theta-operator$ be which has been widely studied by Campbell [8]. We have extended the concept of $\theta-operator$ to another concept we called it $\beta-operator$, the class of $\beta-operator$ in B (\mathcal{H}) is denoted by β .

Let $T \in B(\mathcal{H})$ then the set of all complex number λ for which $T - \lambda I$ is not invertible is called the spectrum of T and denoted by $\sigma(T)$ that is, $\sigma(T) = \{\lambda \in \mathbb{C}: (T - \lambda I) \text{ is not invertible}\}$. The complement of the spectrum of T is called resolvent set of T. The spectrum of T can be split into many disjoint sets [9]. The point spectrum of the operator T is denoted by $\sigma_p(T)$ is the set of all those λ for which $T - \lambda I$ is not injective, that is $\sigma_p(T) = \{\lambda \in \mathbb{C}: ker(T - \lambda I) \neq 0\}$

A scalar λ is said to be the approximate point spectrum for the operator T and denoted by $\sigma_{ap}(T)$, if there exists a sequence of unit vector $\{x_n\}$ such that $\|(T - \lambda I)x_n\| \to 0$ [9]. Let T be a linear transformation from a normed space X into a normed space Y (i. e. $T: X \to Y$). Then T is said to be compact if $\overline{T(\mathcal{B})}$ is compact for every bounded

subset \mathcal{B} of X, that is, $\overline{T(\mathcal{B})}$ is relatively compact for every bounded subset \mathcal{B} of X [9].

1. Basic concept on α-almost similarity

Definition 1.1: Let α be a real number, two bounded linear operators $A, B \in B(\mathcal{H})$ are said to be α -almost similar and, denoted by $A \approx B$. If there exist an invertible operator X such that:

$$A^*A = X^{-1}B^*B \times X \dots (1)$$
 and, $A^* + \alpha A = X^{-1}(B^* + \alpha B) \times (2)$.

 $=X^{-1}(B^* + \alpha B) X.....(2).$ **Example 1.2**: Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2 , and define the invertible operator on \mathbb{C}^2 as follows: $X=X^{-1}=\begin{bmatrix}0&1\\1&0\end{bmatrix}$,take $\alpha=2$, then $A\stackrel{?}{\approx}B$. To show

that
$$A^*A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = X^{-1}B^*B X$$

$$A^* + 2A$$

$$= \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + 2\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} (\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + 2\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= X^{-1}(B^* + 2B) X$$

Remark 1.3: Every 1– almost similar operators are almost similar and the converse are true.

The following example show almost similar and α -

almost similar are independent when $\alpha \neq 1$. **Example 1.4:** Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2 , and define the invertible operator on \mathbb{C}^2 as

follows: $X = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$, take $\alpha = -1$. Then $A \approx^{-1} B$. But

A is not almost similar to B Since $A^* + A \neq X^{-1}(B^* + B) X$, indeed $A^* + A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I$, $B^* + B = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. $B^* + B \neq X(A^* + A)X^{-1} = 2XIX^{-1} = 2XIX^{-1}$

$$B = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}. \quad B^* + B \neq X(A^* + A)X^{-1} = 2X I X^{-1} = 2I \text{ for every invertible operator } X.$$

Theorem 1.5: let $\alpha \in \mathbb{R}$, the relation $\stackrel{\alpha}{\approx}$ on $B(\mathcal{H})$ is equivalence relation.

Proof: (i)Reflexivity, let $A \in B(\mathcal{H})$ take X = I. A^*A $= X^{-1}A^*AX$ and, $A^*+\alpha A = X^{-1}(A^*+\alpha A) X$. Then $A \stackrel{\propto}{\approx} A$.

(ii) Symmetry, suppose that $A, B \in B$ (\mathcal{H}) and, $A \approx B$. Then there exists an invertible operator X such that.

 $A^*A = X^{-1}B^*B X$ (1), and, $A^* + \alpha A =$ $X^{-1}(B^*+\alpha B) X.....(2).$

Now, pre-multiplying and post-multiplying (1) and (2) by X and X^{-1} , respectively yields. $XA^*AX^{-1} =$ B^*B(3), and, $X(A^*+\alpha A)$ $B^* + \alpha B \dots (4)$.

Take $Y = X^{-1}$, which is an invertible operator, since X^{-1} is an invertible operator.

Substituting X and \hat{X}^{-1} in (3) and (4) by Y^{-1} and Y respectively, we get $B \stackrel{\propto}{\approx} A$.

(iii) Transitivity, suppose that A, B and $C \in B(\mathcal{H})$. And $A \overset{\propto}{\approx} B$, $B \overset{\propto}{\approx} C$, to show that $A \overset{\propto}{\approx} C$.

Since $A \approx B$, then there exists an invertible operator X such that.

 $X^{-1}B^*B X....(1),$ A^*A and $A^*+\alpha A$ $=X^{-1}(B^*+\alpha B) X \dots (2).$

Also, since $B \approx C$, then there exists an invertible operator $Y \in B(\mathcal{H})$ such that

 $B^*B = Y^{-1} C^*C Y \dots (3)$ and, $B^* + \alpha B = Y^{-1}(C^* + \alpha C)$ Y (4).

Substituting (3) and (4) in (1) and (2) as follows:

 $A^*A = X^{-1}[Y^{-1}C^*C Y] X$ $= X^{-1}Y^{-1}[C^*C]YX =$ $(YX)^{-1} C^*C(YX)............(5)$

Also, $A^* + \alpha A = X^{-1}[Y^{-1}(C^* + \alpha C)Y]X$. Which implies that $A^* + \alpha A = (YX)^{-1}[C^* + \alpha C](YX)....(6)$. Then from (5) and (6) we get $A \approx C$.

Proposition 1.6: Let $A \in B(\mathcal{H})$, such that $A \stackrel{\alpha}{\approx} 0$, then A = 0.

Proof: Since $A \approx 0$ then there exists an invertible operator X such that.

 $A^*A = X^{-1}0^*0 \ X = 0 \ \dots (1), \text{ and } A^* + \alpha A =$ $X^{-1}(0^*+\alpha 0) X = 0 \dots (2).$

Then $A^*A = 0$ and $A^* + \alpha A = 0$. Now, $||Ax||^2$ $=\langle Ax|Ax\rangle = \langle A^*Ax|x\rangle = \langle 0|x\rangle = 0$

Therefore Ax = 0 for all $x \in \mathcal{H}$. Thus A = 0.

Remark 1.7: suppose that $A, B \in B(\mathcal{H})$ such that $A \approx B$, then clearly by using mathematical induction we can prove:

- (i) $(A^*\hat{A})^n = X^{-1} (B^*B)^n X$,
- (ii) $(A^* + \alpha A)^n = X^{-1}(B^* + \alpha B)^n X$. For all-natural number n.

Proposition 1. 8: Let $A, B \in B$ (\mathcal{H}) such that $A \stackrel{\propto}{\approx} B$. Then A is isometric if and only if B is isometric.

Proof: Suppose that A is isometric. Since $A \approx B$ this means that there exists an invertible operator X such that $A^*A = X^{-1}(B^*B) X \dots (1)$, and, $A^* + \alpha A =$ $X^{-1}(B^* + \alpha B) X \dots (2)$. Since A is isometric then $A^*A = I$ substituting in the equality (1) we have

 $I = A^*A = X^{-1}(B^*B) X$ which implies that $B^*B = I$. Thus, *B* is isometric.

Conversely: by the same way we can prove that A is isometric whenever *B* is isometric.

Proposition 1. 9: Let $\alpha \in \mathbb{R}$. A, B are two operators in B (\mathcal{H}) with $A \approx B$. Then:

- (i) A^*A is onto if and only if B^*B is onto,
- (ii) $A^* + \alpha A$ is onto if and only if $B^* + \alpha B$ is onto,
- (iii) A^*A is one -to-one if and only if B^*B is one-toone,
- (iv) $A^* + \alpha A$ is one-to-one if and only if $B^* + \alpha B$ is one -to-one,
- (v) A^*A is projection if and only if B^*B is projection. Proof: Clearly.

Remark 1.10: Let $\alpha \in \mathbb{R}$. A, B are two operators in B (\mathcal{H}) with $A \approx B$. Then:

- (vi) A^*A is one-to-one and onto if and only if B^*B is one-to-one and, onto.
- (vii) $A^* + \alpha A$ is one-to-one and, onto if and only if $B^* + \alpha B$ is one-to-one and, onto.

Proof: immediately from proposition 1.9 above.

proposition 1.11: Let $A \in B(\mathcal{H})$ and $A \stackrel{\alpha}{\approx} I$, then A is isometry.

TJPS

Proof: Suppose that $A \stackrel{\propto}{\approx} I$. then there exists an invertible operator X such that $A^*A = X^{-1}(I^*I) X = X^{-1}(I) X = X^{-1}X = I$... (1). Then $A^*A = I$ (i.e. A is isometry).

Proposition 1.12: Let $A, B \in B$ (\mathcal{H}) and $A \approx B$ such that A is partially isometric then B is partially isometric.

Proof: $A \approx B$ means that there exists an invertible operator X such that

 $A^*A = X^{-1}(B^*B) \ X.....$ (1). Since A is parietally isometric then A^*A is projection (i.e. $(A^*A)^2 = A^*A$). By squaring both sides in (1) we have $(X^{-1}(B^*B) \ X) = (A^*A)^2 = A^*A$. Then $X^{-1}(B^*B) \ (B^*B) \ X = X^{-1}(B^*B) \ X \dots$ (2).

Pre-multiplying and post-multiplying (2) by X and X^{-1} respectively we have, $(B^*B)^2 = B^*B$ (i.e. B^*B is projection). Which implies that B is partially isometric.

Proposition 1.13: Let $\alpha \in \mathbb{R}$. Then the transformation $\varphi : B(\mathcal{H}) \to B(\mathcal{H})$ that satisfies $\varphi(A^*A) = X^{-1}(B^*B)$ X, $\varphi(A^* + \alpha A) = X^{-1}(B^* + \alpha B)$ X is an automorphism. That is, it maps sums into sums, products into products and scalar multiplies into scalar multiplies.

Proof: suppose that A, B, C and $D \in B(\mathcal{H})$ such that $\varphi(A^*A) = X^{-1}(B^*B)$ X and $\varphi(C^*C) = X^{-1}(D^*D)$ X. Then

 $\varphi(A^*A + \alpha C^*C) = X^{-1}(B^*B + \alpha D^*D) X = X^{-1}(B^*B) X + \alpha X^{-1}(D^*D) X = \varphi(A^*A) + \alpha$ $\varphi(C^*C) \text{ and, } \varphi((A^*A) (C^*C)) = X^{-1}((B^*B)(D^*D))$ $X = X^{-1}(B^*B)XX^{-1}(D^*D) X$

 $= (X^{-1}(B^*B)X)(X^{-1}(D^*D)X) = \varphi(A^*A) \varphi(C^*C).$

Proposition 1.14: Let $A, B \in B$ (\mathcal{H}) such that A, B are unitarily equivalent then $A \stackrel{\alpha}{\approx} B$ for every $\alpha \in \mathbb{R}$.

Proof: Since A and B are unitarily equivalent then there exists a unitary operator U such that $A = U^*BU$. Then $A^* = U^*B^*U$ which implies that $A^*A = (U^*B^*U)(U^*BU) = U^*B^*(UU^*)BU = U^*B^*(I)BU = U^*B^*BU$. And, $A^* + \alpha A = U^*B^*U + \alpha U^*BU = U^*B^*U + U^*\alpha BU = U^*(B^* + \alpha B)U$

Thus, $A \stackrel{\propto}{\approx} B$ for all $\alpha \in \mathbb{R}$.

proposition 1.15: Let $A, B \in B$ (\mathcal{H}) such that $A \overset{\circ}{\approx} B$ for every real α . Then $(A + \lambda I)^{\alpha}_{\approx} (B + \lambda I)$ for every real λ .

Proof: $A \approx B$ means that there is an invertible operator X such that.

 $A^*A = X^{-1}(B^*B) X \dots$ (1). And, $A^* + \alpha A = X^{-1}(B^* + \alpha B) X \dots$ (2).

From the equality (2) we have $A^* + \alpha A = X^{-1}B^*X + X^{-1}\alpha B$ X, by post-adding to both sides $\lambda I + \alpha \lambda I$ which implies that $A^* + \alpha A + \lambda I + \alpha \lambda I = X^{-1}B^*X + X^{-1}\alpha B$ $X + \lambda I + \alpha \lambda I$. Then we have $A^* + \lambda I + \alpha (A + \lambda I) = X^{-1}B^*X + X^{-1}\alpha B$ $X + \lambda I + \alpha \lambda I$ which implies that

 $(A + \lambda I)^* + \alpha (A + \lambda I)$ = $X^{-1}(B + \lambda I)^*X + X^{-1}(\alpha B + \lambda I)X....$ (3). Since λ is real number. Now, we want to prove that $(A + \lambda I)^*(A + \lambda I)$ = $X^{-1}(B + \lambda I)^*(A + \lambda I)X$. $(A + \lambda I)^*(A + \lambda I)$

 λI)*(A + λI)= A*A + λA * + λA + $\lambda^2 I$ = A*A + $\lambda (A^* + A) + \lambda^2 I$

= $X^{-1}(B^*B) X + \lambda X^{-1}(B^* + B) X + \lambda^2 X^{-1}X$ (since (1) and (2) are satisfies when $\alpha = 1$) = $X^{-1}[(B^*B) + \lambda(B^* + B) + \lambda^2]X = X^{-1}[(B^* + \lambda I)(B + \lambda I)] X$ = $X^{-1}[(B + \lambda I)^* (B + \lambda I)] X$, since λ is real number. Then $(A + \lambda I)^* (A + \lambda I) = X^{-1}[(B + \lambda I)^* (B + \lambda I)]$

From the equality (3) and the equality (4) we have $(A + \lambda I)_{\infty}^{\infty} (B + \lambda I)$ for every real λ .

X....(4).

proposition 1.16: Let $A, B \in B(\mathcal{H})$ be projections such that $A \stackrel{\propto}{=} B$ and $(A + \lambda I) \stackrel{\sim}{=} (B + \lambda I)$. Then: $\sigma(A) = \sigma(B), \sigma_p(A) = \sigma_p(B)$ and $\sigma_{ap}(A) = \sigma_{ap}(B)$.

Proof: $A \approx B$ means that there is an invertible operator X such that.

 $A^*A = X^{-1}(B^*B) \ X \dots (1)$. And, $A^* + \alpha A = X^{-1}(B^* + \alpha B) \ X \dots (2)$.

Since A and B are projection then A and B are self-adjoints. Then (2) becomes $(1 + \alpha)A = X^{-1}(1 + \alpha)B X$ which implies that $A = X^{-1}B X$. This means that $A \sim B$,

 $\sigma(A) = \sigma(B), \sigma_p(A) = \sigma_p(B) \text{ and, } \sigma_{ap}(A) = \sigma_{ap}(B) [6].$

Theorem 1.17 [10]: the operator $A \in B(\mathcal{H})$ is compact if and only if A^*A is compact.

Proposition 1.18: Let $\alpha \in \mathbb{R}$. $A, B \in B$ (\mathcal{H}) and $A \overset{\alpha}{\approx} B$. If A is compact then B is compact.

Proof: since $A \approx B$ then there exsist an invertible operator X such that

 $A^*A = X^{-1}B^*B X$ pre-multiplying and post-multiplying both sides by X and X^{-1} respectively, we have $X A^*A X^{-1} = B^*B$. Since A is compact then $X A^*A X^{-1}$ is also compact. By theorem 1.17 above then B is compact.

Theorem 1.19: Let $\alpha \in \mathbb{R}$. $A, B \in B$ $(\mathcal{H}), X$ be an invertible operator. If XA = BX and, $XA^* = B^*X$. Then A and B are α -almost similar.

Proof: by hypothesis XA = BX and, $XA^* = B^*X$ then we have $A = X^{-1}BX$ and, $A^* = X^{-1}B^*X$. Now, $A^*A = (X^{-1}B^*X)(X^{-1}BX) = X^{-1}B^*(XX^{-1})BX = X^{-1}B^*BX$ and,

 $A^* + \alpha A = X^{-1}B^*X + X^{-1}(\alpha B)X = X^{-1}(B^* + \alpha B)X$. Then A and B are α -almost similar.

Proposition 1.20: If $A, B \in B$ (\mathcal{H}) are similar normal operators, then $A \stackrel{\alpha}{\approx} B$.

Proof: suppose that A and B are similar normal operators then there exists an invertible operator X such that XA = BX. Then $XA^* = B^*X$ by Fuglede-Putnam theorem [6].

Now, by using theorem 1.20 we have, A and B are α -almost similar.

Remark 1.21: The converse of the proposition 1.20 is not true in general.

Consider the following example: Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $X = X^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, be the operators on two-dimensional Hilbert space \mathbb{C}^2 , take $\alpha = 2$, then

TJPS

 $A \underset{\approx}{\overset{2}{\approx}} B$. Also A is similar to B (I.e. XA = BX) but $A^*A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = AA^*$ and, $B^*B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = BB^*$. Then A and B are not normal operators.

2. The properties of self-adjoint operator on α -almost similarity.

Proposition 2.1: Suppose that A, B are self-adjoint operators in B (\mathcal{H}) with $A \subset B$ (i.e. A is similar to B), then $A \subset B$, for every $\alpha \in \mathbb{R}$.

Proof: Since A and B are similar operators, then there exists an invertible operator X such that XA = BX (i.e. $A = X^{-1}BX$).

Also, A and B are self-adjoint operators in B (\mathcal{H}) , then

 $A^*A = X^{-1}B^*B X$ (1). Also, $A^* + \alpha A = A + \alpha A = X^{-1}B X + \alpha X^{-1}B X = X^{-1}(B + \alpha B) X = X^{-1}(B^* + \alpha B) X$ (2). From (1) and (2) we have $A \stackrel{\sim}{\sim} B$.

Remark 2.2: The converse of the Proposition 2.1. above is not true in general.

For example: Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ and $X = X^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, be the operators on the two-dimensional Hilbert space \mathbb{C}^2 take $\alpha = 2$. We know that $A \geq B$ as in example 1.2. Moreover $A \sim B$. But $A \neq A^*$, also $B \neq B^*$. Thus, A and B are not self-adjoint operators.

Proposition 2.3: Let $\alpha = -1 \in \mathbb{R}$. $A, B \in B$ (\mathcal{H}) and $A \underset{\approx}{\sim} B$. If A is self-adjoint then B is self-adjoint.

Proof: Since $A \geq 0$, then there exist an invertible operator X such that $A^* - A = X^{-1}(B^* - B) X$. Which implies that $0 = X^{-1}(B^* - B) X \dots (1)$. Premultiplying and post multiplying (1) by X and X^{-1} respectively we have $0 = B^* - B$. Then $B = B^*$.

Remark 2.4: The converse of proposition 2.3 above is not true in general for example $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} = A^*, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = B^* and, X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2 , take $\alpha \in \mathbb{R}$. Then $\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 0 \end{bmatrix} \neq X^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X = X^{-1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X = X^{-1} I X = I$. Thus, A is not α -almost similar to B. Then A is not (-1)-almost similar to B.

Theorem 2.5 [4]: (Cartesian form) let T be any operator, then there exist self-adjoint operators A and B such that T = A + iB. When $A = \frac{1}{2}(T + T^*)$ and, $B = \frac{1}{2}(T - T^*)$.

Theorem 2.6: Let $T \in \mathbb{B}(\mathcal{H})$ then $T = T^*$ if and only if T is normal and

 $(T + T^*)^2 = 4T^*T.$

Proof: If $T = T^*$ then clearly $(T + T^*)^2 = 4T^*T$ and T is normal.

Conversely: If $4T^*T = (T^* + T)^2 = (T^* + T)(T^* + T) = T^{*2} + 2T^*T + T^2$. Hence, $T^{*2} - 2T^*T + T^2 = 0$ which implies that $(T^* - T)^2 = 0$.

 $-(T^* - T)^2 = 0 \Rightarrow (T^* - T)(T - T^*) = 0$. Let $S = T^* - T \Rightarrow SS^* = 0 \Rightarrow 0 = \langle SS^*x | x \rangle = \langle S^*x | S^*x \rangle = ||S^*x||^2$ for every x. Then $S^*x = 0$ for every $x \Rightarrow S^* = 0 \Rightarrow S = 0 \Rightarrow T^* - T = 0 \Rightarrow T^* = T$.

Remark 2.6: If $T = T^*$ then $(T^* + \alpha T)^2 = (1 + \alpha)^2 T^*T$ for every $\alpha \in \mathbb{R}$.

Proposition 2.7: Suppose that $(T^* + \alpha T)^2 = (1 + \alpha)^2 T^* T$ then:

(i) If $\alpha=1$ and T is normal then $T=T^*$.

(ii) If α =-1 then $T = T^*$.

(iii) If $\alpha \neq 1$, -1 then $T^{*2} = T^2$.

Proof: (i) directly as in theorem 2.6. And (ii) clearly. Now to prove (iii) let $\alpha \neq 1$, -1. $(T^* + \alpha T)^2 = (1 + \alpha)^2 T^* T$ by taking adjoint to both sides we have $(T + \alpha T^*)^2 = (1 + \alpha)^2 T^* T$. Then $T^{*2} + \alpha T^* T + \alpha T T^* + \alpha^2 T^2 = T^2 + \alpha T T^* + \alpha^2 T^{*2} \Longrightarrow T^{*2} = T^2$.

Theorem 2.8 [4]: If T is normal operator, then there exists a unitary operator U such that $T^* = UT$.

3. The properties of β – operator on α -almost similarity.

Definition 3.1: let $A \in B(\mathcal{H})$, then A is called an β – operator if A^*A commutes with $A^*+\alpha A$. The class of all β – operator in a Banach algebra on a Hilbert space \mathcal{H} is denoted by β i.e. $\beta = \{A: A \in B(\mathcal{H}) \text{ such that } [A^*A, A^*+\alpha A] = 0\}.$

Example 3.2: Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and take $\alpha = 3$ then $\begin{bmatrix} A^*A, A^* + 3A \end{bmatrix} = 0$

i.e. $(A^*A)(A^*+3A) = (A^*+3A)(A^*A)$ which implies that A is β -operator.

Proposition 3.3: If $A \in B$ (\mathcal{H}) is β - operator then kA is β - operator for every real number k. Proof: Clearly.

Proposition 3.4: If $A, B \in B$ (\mathcal{H}) and $A \stackrel{\propto}{\approx} B$ such that B is β – operator then A is β – operator.

Proof: $A \approx B$ means that there exists an invertible operator X such that

 $A^*A = X^{-1}(B^*B) X$. And, $A^* + \alpha A = X^{-1}(B^* + \alpha B)$

Then, $[X^{-1}(B^* + \alpha B) X] [X^{-1}(B^*B) X] = [A^* + \alpha A] A^*A \dots (1)$

And $[X^{-1}(B^*B) \ X] [X^{-1}(B^* + \alpha B) \ X] = A^*A [A^* + \alpha A] \dots$ (2). From the equality (1) we have: $[X^{-1}(B^* + \alpha B) \ (B^*B) \ X] = [A^* + \alpha A] \ A^*A \dots$ (3). Also, from the equality (2) we have: $[X^{-1}(B^*B) \ (B^* + \alpha B) \ X] = A^*A [A^* + \alpha A] \dots$ (4).

Since B is β - operator then the left-hand side of the equality (3) and the equality (4) are equal, which imply that the right-hand side of the equality (3) and the equality (4) are equal. Hence A is β - operator.

4. The relation among similarity, unitarily equivalent, quasi similarity and almost similarity with α -almost similarity.

Proposition 4.1: Let $A, B \in B$ (\mathcal{H}) are orthogonal projection then A and B are α -almost similar if and only if A and B are similar.

Proof: Suppose that $A \underset{\approx}{\overset{\circ}{\sim}} B$ and A, B are projection then by proposition 1.16 we get $A \sim B$.

TJPS

Conversely, suppose that A and B are similar operators then there exists invertible operator X such that $A = X^{-1}B$ X, since A and B are orthogonal projection then $A = A^* = A^2$, $B = B^* = B^2$. Which implies that $A^2 = X^{-1}B^2$ X then we have $A^*A = X^{-1}B^*B$ X.

On the other hand, the second inequality follows from the fact that

$$A^* + \alpha A = (1 + \alpha)A = (1 + \alpha)X^{-1}BX = X^{-1}(B^* + \alpha B)X$$
. Thus, $A \approx B$.

Proposition 4.2: Let $\alpha \in \mathbb{R}$. $A, B \in B$ (\mathcal{H}) and A, B are self-adjoint then A and

B are unitarily equivalent if and only if $A \approx B$.

Proof: Suppose that *A* and *B* are unitarily equivalence then by proposition 1.14we have $A \approx B$.

Conversely: Suppose that $A, B \in B(\mathcal{H})$ are self-adjoint with $A \approx B$.

Now, $A \stackrel{\alpha}{\approx} B$ means that there exists an invertible operator X such that

$$A^*A = X^{-1}(B^*B) \ X.......$$
 (1), and $A^* + \alpha A = X^{-1}(B^* + \alpha B) \ X.......$ (2).

Since A, B are self-adjoint and $A \underset{\approx}{\circ} B$ then they are similar operates (i. e $A = X^{-1}B$ X). Then A and B are both similar and self-adjoint operators then A and B are normal. Thus A and B are unitarily equivalence.

Corollary 4.3: Let $\alpha \in \mathbb{R}$. $A, B \in B$ (\mathcal{H}) are self-adjoint and $A \overset{\alpha}{\approx} B$. Then A and B are unitarily equivalent.

Proof: directly from proposition 4.2 above.

References

- [1] Muhammed H. Mortad (2009). Yet more versions of the Fugled-Putnam theorem. *Glasgow Math. J.* **51:** 473-480.
- [2] Dehimi, S. (2017). Operators similar to their adjoints. D. Sc. Thesis, *University of Oran1 Ahmed Ben Bella*.
- [3] Isaiah, N. S.; Sammi, W. M.; B. M. Nzimbi and Kikete W. D. (2015). A note on quasi-similarity in Hilbert spaces. *International Journal of Math. Archive*-6(7): 49-55.
- [4] Berberian, S. K. (1961). Introduction to Hilbert space. *Oxford university. Press, New York*.
- [5] I. N. Sitati; B. M. Nzimbi; Stephen L. and Jairus K. (2017). Remarks on A-skew-adjoint, A-almost similarity equivalence and other operators in Hilbert

Proposition 4.4: Let $A, B \in B(\mathcal{H})$ are self-adjoint operators then, A and B are α - almost similar if and only if A and B are almost similar.

Proof: Suppose that A, B are α -almost similar then there is an invertible operator X such that. $A^*A = X^{-1}(B^*B) X \dots (1)$, and $A^* + \alpha A = X^{-1}(B^* + \alpha B) X \dots (2)$.

Since A and B are self-adjoint Then $A = A^*$, $B = B^*$ then (2) becomes

 $(1 + \alpha)A = (1 + \alpha)X^{-1}B$ X. Now pre-multiplying both sides by $\frac{2}{(1+\alpha)}$, $\alpha \neq -1$. Which implies that $2A = 2X^{-1}BX \implies A + A^* = X^{-1}(B + B^*)X$ (3).

From (1) and (3) we have A and B are almost similar. Conversely, suppose that A, B are almost similar then (1) and (3) satisfies. Since A and B are self-adjoint Then (3) becomes $2A = 2X^{-1}BX$, pre-multiplying both sides by $\frac{1+\alpha}{2}$ which implies that $(1+\alpha)A = (1+\alpha)X^{-1}BX \implies A + \alpha A = X^{-1}(B+\alpha B) X \implies A^* + \alpha A = X^{-1}(B^* + \alpha B) X$. Thus, A and B are α -almost similar.

Remark 4.7: the converse of proposition 4.6 is not true in general consider the following example: Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ be the operators on the two-dimensional Hilbert space \mathbb{C}^2 , and define the invertible operator on \mathbb{C}^2 as follows: $X = X^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, take $\alpha = 2$. then $A \stackrel{2}{\approx} B$. As in example 1.2. Also, $A \stackrel{a.s}{\approx} B$. But $A \neq A^*$ and, $B \neq B^*$.

space. Pure and Applied Mathematics Journal, **6(3)**: 101-107

- [6] Kipkemoi, T. S. (2016). On almost similarity and other related equivalence relations of operators in Hilbert spaces. M. Sc. Thesis, *University of Nairobi*.
- [7] Jibril, A. A. (1996). On almost similar operators. *Arabian J. Sci. Engrg.*, **21:** 434-449.
- [8] Campbell, S.L. and Gellar, R. (1977). Liner operators for which T^*T and T + T commute II. *Trans. Of the Amer. Math. Soc.*, **226pp**: 305-319.
- [9] Kreyszing, E. (1978). Introductory functional analysis with application. *Wiley, New York*.
- [10] Musundi, S. W.; Sitati, N. I.; Nzimbi, B. M and Murwayi, A. L. (2013). On almost similarity operator equivalence relation. *IJERRAS* **15**(**3**): 293-299.

α -لنمطية المتشابهة تقريبا من النمط

امجد حمد عبد المجيد ، ليث خليل شاكر قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

درسنا في هذه البحث المؤثرات الخطية المقيدة المتشابهة تقريبا من النمط α وهو مفهوم جديد لنظرية المؤثرات الخطية, كذلك بعض المفاهيم الاساسية المتعلقة بمفهوم المؤثرات الخطية المقيدة المتشابهة تقريبا من النمط α . كذلك عرفنا مفهوما جديدا والذي اطلقنا عليه اسم المؤثر من النمط θ وعلاقة هذا المؤثر بالمؤثرات الخطية المتشابهة تقريبيا من النمط α . في نهاية هذا البحث درسنا بعض العلاقات المهمة بين لتشابه, والمؤثرات الاحادية المتكافئة, والتشابه التقريبي من جهة وبين المؤثرات الخطية المتشابهة تقريبا من النمط α من الجهة الاخرى.