Modified new conjugate gradient method for Unconstrained Optimization

Main Article Content

Zeyad M. Abdullah
Hameed M, Sadeq
Hisham M, Azzam
Mundher A. Khaleel

Abstract

The current paper modified method of conjugate gradient for solving problems of unconstrained optimization. The modified method convergence is achieved by assuming some hypotheses. The statistical results demonstrate that the modified method is efficient for solving problems of Unconstrained Nonlinear Optimization in comparison with methods FR and HS

Article Details

How to Cite
Zeyad M. Abdullah, Hameed M, Sadeq, Hisham M, Azzam, & Mundher A. Khaleel. (2019). Modified new conjugate gradient method for Unconstrained Optimization. Tikrit Journal of Pure Science, 24(5), 86–90. https://doi.org/10.25130/tjps.v24i5.422
Section
Articles

References

[1] Andrei, N. (2008). ''An unconstrained optimization test functions collection''. Adv. Model. Optim, 10(1), 147-161.

[2] Andrei, N. (2007a), "Numerical comparison of conjugate gradient algorithms for unconstrained optimization", Studies in Informatics and Control, 16.

[3] Bannas, J., Gilbert, J., Lemarechal, C. and Sagastizable, G. (2006), "Numerical Optimization, Second Eddition. Springer-Verlag Brlin".

[4] Dai, Y. and Yuan, Y. (1999), "A Nonlinear conjugate gradient method with a strong global convergence property", SIAM J, Optim, 10.

[5] Dai, Y. and Yuan,Y. (2003), "A class of globally convergent CG methods", Sci. china Ser. A, 46.

[6] Dai. Y. H and Liao. L. Z, (2001), "New conjugacy condition and related nonlinear conjugate gradient methods", Applied Mathematics and Optimization 43, pp. 87-101.

[7] Dolan. E. D and J. J. Mor´e, (2001), "Benchmarking optimization software with performance profiles", Math. Programming, 91 pp. 201-213.

[8] Fletcher, R. (1987), "Practical Methods For Optimization", John Wiley & Sons Lth.

[9] Fletcher, R. and Reeves, G. (1964), "Function minimization by gradients computer", Journal, Vol(7).

[10]Hestenes, M and Stiefel, E. (1952), "Methods of CG for solving linear Systems", J. Research Nat. Bar . standards Sec . B . 49.

[11] Kinsella. J . (2009), "Course Notes for MS4327 optimization" http:// jkcray.

Maths.ul.ie/ms4327/slides.pdf2009.

[12] Li, Z. and Weijun, Z. (2008), "Tow descent hybrid conjugate gradient methods for optimization", Journal of computational and Appl. Math.216, pp251-264.

[13] Liu, D. and Story, C. (1991), "Efficient generalized CG algorithms", part l : Theory, Journal of Optimization Theory and Applications 69.

[14] Perry, A. (1978). ''A modified conjugate gradient algorithm. Operations Research'', 26(6), 1073-1078..

[15] Polak, E. and Ribiere,G. (1969), "Not sur la convergence de directions conjugate". Rev. Franaisse Informants. Research operational, 3e Anne., 16.

[16] Tomizuka. H and Yabe. H, (2004), "A Hybrid Conjugate Gradient method for unconstrained Optimization", February, 2004, revised July, 2004.