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ABSTRACT 

In this paper, the study extended eigenvalues and extended 

eigenvectors, and we will investigate the 𝐸𝜆(𝐴)  and give for some 

concepts properties and result important, also we will find the 𝐸(𝑈) and 

𝐸(𝐵) on the ℓ2 space, so U is Unilateral shift operator and 𝐵 = 𝑈∗. 

 

 

1. Introduction  
Let ℋ  be a complex Hilbert space, and ℬ(ℋ)  the 

algebra of all bounded linear operators on ℋ . A 

complex number 𝜆 is called an extended eigenvalue 

of an operators 𝐴 ∈ ℬ(ℋ) if there exists a non-zero 

operator 𝑋 ∈ ℬ(ℋ)  satisfying the equation  𝐴𝑋 =
𝜆𝑋𝐴 , such an operator 𝑋  is called extended 

eigenvector for the operator A corresponding to 𝜆 . 

The eigenvalue terminology, although not perfectly 

accurate, seems useful on two levels. The first was 

described in [1], briefly, if 𝐴 has dense range, then the 

equation 

𝐴𝑋 = 𝜑(𝑋)𝐴, 𝜑(𝑋) ∈ ℬ(ℋ)  …. (1) 

 has a unital algebra as its solution set, and 𝜑  is a 

unital homomorphism. Our extended eigenvalues are 

precisely the eigenvalues for 𝜑. The second point of 

view is that one can easily show that for an operator 

on a finite dimensional space, the set of extended 

eigenvalues for that operator is the set of ratios of 

eigenvalues, with the obvious restriction on the use of 

0. This is shown explicitly in [2]. More see [3, 4]. 

Now the set of all extended eigenvalues of 𝐴  is 

denoted by 𝐸(𝐴)  and the set of all extended 

eigenvectors of A corresponding to 𝜆 is denoted by 

�̃�𝜆(𝐴) and 𝐸1(𝐴) is{𝐴}′, the commutant of 𝐴, that is, 

the set of all operators commuting with 𝐴 . In this 

paper, we give some concepts properties and we 

prove important theorems. In particular we find 𝐸(𝑈) 

also 𝐸(𝐵) on the ℓ2 space. 

2. Extended eigenvalues and Extended 

eigenvectors 
Definition (2.1) :[2] A complex number 𝜆 is called 

an extended eigenvalue of 𝐴 ∈ ℬ(ℋ) if there exists a 

non-zero operator 𝑋 ∈ ℬ(ℋ) satisfying the equation   

𝐴𝑋 = 𝜆𝑋𝐴   …. (2) 

Such that an operator 𝑋  is called extended 

eigenvector corresponding to 𝜆, is denoted by 𝐸(𝐴) 

to the set of all extended eigenvalues for A; that is,  
𝐸(𝐴) = {𝜆 ∈ ℂ: ∃0 ≠ 𝑋 ∈ ℬ(ℋ), 𝐴𝑋 = 𝜆𝑋𝐴}  and 

�̃�𝜆(𝐴)  is the set of all extended eigenvectors 

corresponding to 𝜆 , therefore �̃�𝜆(𝐴) = {0 ≠ 𝑋 ∈
ℬ(ℋ), 𝐴𝑋 = 𝜆𝑋𝐴} . 𝐸(𝐴)  is non-empty set, since  

1 ∈ 𝐸(𝐴) and the identity operator I ∈ �̃�1(𝐴). 

Proposition (2.2) : Suppose that 𝐴 ∈ ℬ(ℋ) . Then 

𝐸𝜆(𝐴) = �̃�𝜆(𝐴) ∪ {0}  is closed linear subspace of  

ℬ(ℋ). 

Proof: Let 𝑋, 𝑌 ∈  𝐸𝜆(𝐴) , and  𝛼, 𝛽, 𝜆 ∈ ℂ . So  

𝐴𝑋 = 𝜆𝑋𝐴, and  𝐴𝑌 = 𝜆𝑌𝐴.  

Thus 𝐴(𝛼𝑋 + 𝛽𝑌) = 𝛼𝐴𝑋 + 𝛽𝐴𝑌 = 𝛼𝜆𝑋𝐴 +
𝛽𝜆𝑌𝐴 = 𝜆(𝛼𝑋 + 𝛽𝑌) . Therefore (α𝑋 + 𝛽𝑌) ∈
𝐸𝜆(𝐴). 

Then 𝐸𝜆(𝐴)  is subspace of  ℬ(ℋ) . Let  {𝑋𝑛}  be a 

sequence of operators in 𝐸𝜆(𝐴) converges to  𝑋 . So 
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that 𝐴𝑋𝑛 = 𝜆𝑋𝑛𝐴 for every positive integer 𝑛. Since 

𝐴 is continues and {𝑋𝑛} ⟶ 𝑋, implies that  

{𝐴𝑋𝑛} ⟶ 𝐴𝑋 , and {𝜆𝑋𝑛𝐴} ⟶ 𝜆𝑋𝐴 . Thus 𝐴𝑋 =
𝜆𝑋𝐴. Then 𝑋 ∈ 𝐸𝜆(𝐴). It is clear that, if 𝐴 is the zero 

operator, then 𝐸(𝐴) = ℂ  and  �̃�𝜆(𝐴) = ℬ(ℋ)\{0} , 

for each  𝜆 ∈ 𝐸(𝐴). ∎ 

Lemma (2.3) : If 𝐴 is a non-zero nilpotent operator, 

then 𝐸(𝐴) = ℂ. 

Proof: Since A is nilpotent operator, then there exist 

a positive integer  𝑛, such that 𝐴𝑛 = 0 and 𝐴𝑛−1 ≠ 0. 

If 𝜆 is any complex number, then 𝜆𝐴𝑛−1𝐴 = 𝜆𝐴𝑛 = 0 

and 𝐴𝐴𝑛−1 = 𝐴𝑛 = 0 . So that 𝐴𝐴𝑛−1 = 𝜆𝐴𝑛−1𝐴 . 

Since 𝐴𝑛−1 ≠ 0. Then 𝜆 ∈ 𝐸(𝐴) or 𝐴𝑛−1 ∈ �̃�𝜆(𝐴). ∎ 

Recall that the wiener algebra 𝑊(𝔻) is the set of all 

analytic function 𝑓 on the unit disc 𝔻 such that  

𝑊(𝔻): = {𝑓(𝑧) = ∑ 𝑓(𝑛)∞
𝑛=0 𝑧𝑛 ∈ 𝐻𝑜𝑙(𝔻): ‖𝑓‖ =

∑ |𝑓(𝑛)|∞
𝑛=0 < +∞ }. [5].  

The unilateral shift operator 𝑆 on 𝑊(𝔻) is defined by  

𝑆𝑓(𝑧) = 𝑧𝑓(𝑧), 𝑓 ∈ 𝑊(𝔻) . In the following 

theorem, M.Gurdal fined the extended eigenvalue for 

𝑆.  

Theorem (2.4) :[5] If 𝑆  is the Unilateral shift 

operator on 𝑊(𝔻), then 𝐸(𝑆) = {𝜆 ∶  |𝜆| ≥ 1}. 

Recall that the unilateral shift operator 𝑈 on the space 

ℓ2 = {𝑥 = (𝑥1, 𝑥2, 𝑥3, … ):  ∑ |𝑥𝑛|2 < ∞}
∞

𝑛=1
 is 

defined by 𝑈(𝑥1, 𝑥2, 𝑥3, … ) = (0, 𝑥1, 𝑥2, 𝑥3, … )  for 

every (𝑥1, 𝑥2, 𝑥3, … ) ∈ ℓ2. In the following theorem, 

we prove that, theorem above is true when the 

unilateral shift 𝑈 is defined on ℓ2 the space. 

Theorem (2.5) : If 𝑈 is the Unilateral shift operator 

on ℓ2, then 𝐸(𝑈) = {𝜆 ∶  |𝜆| ≥ 1}. 

Proof: Suppose that  |𝜆| ≥ 1 and 𝐷1
𝜆⁄  is the diagonal 

operator on ℓ2. So that 𝐷1
𝜆⁄ (𝑥1, 𝑥2, 𝑥3, … ) = 

(𝑥1, 1
𝜆⁄ 𝑥2, 1

𝜆2⁄ 𝑥3, … )  for every (𝑥1, 𝑥2, 𝑥3, … ) ∈

ℓ2. It's clear that 𝐷1
𝜆⁄ is non-zero bounded operator 

and 𝑈𝐷1
𝜆⁄ = 𝜆𝐷1

𝜆⁄ 𝑈. Therefore 𝜆 ∈ 𝐸(𝑈) and 𝐷1
𝜆⁄ is 

extended eigenvector for 𝜆. 

 Now, we shall prove that if  |𝜆| < 1 , then 𝜆  not 

extended eigenvalue. It is clear 𝜆 ∈ 𝐸(𝑈) with   that 

𝜆 = 0 is not extended eigenvalue, since 𝑈 is injective. 

So that we assume 0 < |𝜆| < 1 . Therefore there 

exists non-zero operator 𝑋  satisfy 𝑈𝑋 = 𝜆𝑋𝑈 . Let 

{𝑒𝑛}  be the standard basis for ℓ2 (i.e.) 𝑒𝑛 =
(0,0, … , 1⏟

𝑛𝑡ℎ

, 0, … ) , 𝑛 = 1, 2, … . Now  ‖𝑋𝑒𝑛+1‖ =

‖𝑋𝑈𝑒𝑛‖ = 1
|𝜆|⁄ ‖𝑈𝑋𝑒𝑛‖ = 1

|𝜆|⁄ ‖𝑋𝑒𝑛‖  Therefore 

‖𝑋𝑒𝑛+1‖ = 1
|𝜆|𝑛+1⁄ ‖𝑋𝑒1‖  ⟶ ∞,  as 𝑛 ⟶ ∞ , 

which this is  contradict that  X is bounded operator. 

Thus 𝐸(𝑈) = {𝜆 ∶  |𝜆| ≥ 1}.∎ 

In the following corollary, we find the extended 

eigenvalues for the bilateral shift operator 𝐵 such that 

𝐵(𝑥1, 𝑥2, 𝑥3, … ) = (𝑥2, 𝑥3, 𝑥4, … )  for every 

(𝑥1, 𝑥2, 𝑥3, … ) ∈ ℓ2, another word 𝐵∗ = 𝑈. 

Corollary (2.6) : If 𝐵 is bilateral shift operator on ℓ2, 

then 𝐸(𝐵) = {𝜆 ∶ |𝜆| ≤ 1}. 

Proof: Let |𝜆| ≤ 1 and 𝐷𝜆 is the diagonal operator, so 

that 𝐵𝐷𝜆(𝑥1, 𝑥2, 𝑥3, … ) = 𝐵(𝑥1, 𝜆𝑥2, 𝜆2𝑥3, … ) 

= (𝜆𝑥2, 𝜆2𝑥3, 𝜆3𝑥4, … )  = 𝜆𝐷𝜆(𝑥2, 𝑥3, 𝑥4, … ) =
(𝜆𝑥2, 𝜆2𝑥3, 𝜆3𝑥4, … )  for every (𝑥1, 𝑥2, 𝑥3, … ) ∈ ℓ2 . 

Thus 𝜆 ∈ 𝐸(𝐵). Then {𝜆 ∶ |𝜆| ≤ 1} ⊆ 𝐸(𝐵) and 𝐷𝜆 is 

extended eigenvector. 

Now, assume 𝜆 ∈ 𝐸(𝐵)  with |𝜆| > 1 , then there 

exists a non-zero operator X such that 𝐵𝑋 = 𝜆𝑋𝐵, by 

taking adjoint, we have 𝐵∗𝑋∗ = 1
𝜆̅⁄ 𝑋∗𝐵∗. Since the 

𝐵∗ = 𝑈, we have 1
𝜆̅⁄ ∈ 𝐸(𝑈), this is contradict the 

fact 𝐸(𝑈) = {𝜆 ∶  |𝜆| ≥ 1} . Thus 𝐸(𝐵) ⊆ {𝜆 ∶ |𝜆| ≤
1}. So 𝐸(𝐵) = {𝜆 ∶ |𝜆| ≤ 1}. ∎ 

Proposition (2.7) : Let 𝑇, 𝑆, 𝐶 ∈ ℬ(ℋ). Then:  

 (1) If 𝑆 ∈ 𝐸𝛼(𝑇), then 𝑇 ∈ 𝐸1
𝛼⁄ (𝑆), where 𝛼 ≠ 0. 

(2) �̃�𝛼(𝑆)∗ = �̃�1
�̅�⁄ (𝑆∗) . Where �̃�𝛼(𝑆)∗ = {𝑋: 𝑋∗ ∈

�̃�𝛼(𝑆)}. 

(3) If 𝑇 ∈ 𝐸𝛼(𝑆)  and 𝑆 ∈ 𝐸𝛽(𝐶)  where 𝛽 ≠ 0 , then 

𝑇𝐶 ∩ 𝐶𝑇 ∈ 𝐸𝛼
𝛽⁄

(𝑆) . In particular if 𝑆 ∈ {𝐶}′ , then 

𝑇𝐶 ∩ 𝐶𝑇 ∈ 𝐸𝛼(𝑆). 

(4) If 𝑇 ∈ 𝐸𝛼(𝑆) ∩ 𝐸𝛽(𝐶) , then 𝑇 ∈ 𝐸𝛼𝛽(𝑆𝐶) ∩

𝐸𝛼𝛽(𝐶𝑆) . In particular, when 𝑇 ∈ {𝐶}′ , then 𝑇 ∈

𝐸𝛼(𝑆𝐶) ∩ 𝐸𝛼(𝐶𝑆). 

Proof: (1) Since 𝑆 ∈ 𝐸𝛼(𝑇), then 𝑇𝑆 = 𝛼𝑆𝑇. Hence 

𝑆𝑇 = 1
𝛼⁄ 𝑇𝑆,  implies that  𝑇 ∈ 𝐸1

𝛼⁄ (𝑆). 

 (2) Let 𝑋 ∈ �̃�𝛼(𝑆)∗, then 𝑋∗ ∈ �̃�𝛼(𝑆). Hence 𝑋∗ ≠ 0 

and 𝑆𝑋∗ = 𝛼𝑋∗𝑆 . So that 𝑆∗𝑋 = 1
�̅�⁄ 𝑋𝑆∗ . Thus 

𝑋 ∈ �̃�1
�̅�⁄ (𝑆∗), then �̃�𝛼(𝑆)∗ ⊆ �̃�1

�̅�⁄ (𝑆∗). By the same 

way we can show that  �̃�1
�̅�⁄ (𝑆∗) ⊆ �̃�𝛼(𝑆)∗ . Thus 

�̃�𝛼(𝑆)∗ = �̃�1
�̅�⁄ (𝑆∗). 

(3) Let 𝑇 ∈ 𝐸𝛼(𝑆) , 𝑆 ∈ 𝐸𝛽(𝐶)  and 𝛽 ≠ 0 , then 

𝑆𝑇 = 𝛼𝑇𝑆  and 𝐶𝑆 = 𝛽𝑆𝐶 . So 𝐶𝑆𝑇 = 𝛼𝐶𝑇𝑆 . 

Therefore 𝑆(𝐶𝑇) = 𝛼
𝛽⁄ (𝐶𝑇)𝑆 , then 𝐶𝑇 ∈ 𝐸𝛼

𝛽⁄ (𝑆) 

also by same way, implies that 𝑇𝐶 ∈ 𝐸𝛼
𝛽⁄ (𝑆) . If 

𝛽 = 1. Hence 𝑇𝐶⋂𝐶𝑇 ∈ 𝐸𝛼(𝑆). 

(4) Since 𝑇 ∈ 𝐸𝛼(𝑆)  and  𝑇 ∈ 𝐸𝛽(𝐶) . Then 𝑆𝑇 =

𝛼𝑇𝑆 and 𝐶𝑇 = 𝛽𝑇𝐶. Thus 𝐶𝑆𝑇 = 𝛼𝐶𝑇𝑆. So (𝐶𝑆)𝑇 =
𝛼𝛽𝑇(𝐶𝑆),  implies that 𝑇 ∈ 𝐸𝛼𝛽(𝐶𝑆)  also 𝑆𝑇𝐶 =

𝛼𝑇𝑆𝐶 . Thus (𝑆𝐶)𝑇 = 𝛼𝛽(𝑆𝐶)𝑇 . Therefore 𝑇 ∈
𝐸𝛼𝛽(𝑆𝐶). ∎ 

  Recall that if that  𝐴  and 𝐵  are two bounded 

operators on Hilbert spaces ℋ then 𝐴 is similar  to 𝐵 

if there exists invertible operator 𝑇 ∈ ℬ(ℋ) such that 

𝐴T = T𝐵, we denote by 𝐴~𝐵, when 𝐴 is similar  to 

𝐵 . If 𝐴 ∈ ℬ(ℋ1)  and 𝐵 ∈ ℬ(ℋ2) , then 𝐴  is quasi-

similar  to 𝐵 if there exists operators 𝑇1  from ℋ1  to 

ℋ2 and 𝑇2from  ℋ2 to ℋ1 such that both 𝑇1 and 𝑇2are 

injective with dense ranges such that  𝑇1𝐴 = 𝐵𝑇1 and 

𝐴𝑇2 = 𝑇2𝐵 , we denote by 𝐴 ≈ 𝐵 , when 𝐴  is quasi-

similar to 𝐵. 

Proposition (2.8) :[2] Suppose that operators 𝐴 and 

𝐵 are quasi-similar. Then 𝐸(𝐴) = 𝐸(𝐵). 

Corollary (2.9) : Suppose that operators 𝐴 and 𝐵 are 

similar and C is quasi-similar to 𝐴 or 𝐵. Then  

𝐸(𝐴) = 𝐸(𝐵) = 𝐸(𝐶).  
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Lemma (2.10): Suppose that 𝜆  is extended 

eigenvalue for the operator 𝐴 , such that 𝜆𝑛 = 1 for 

some positive integer 𝑛. Then 𝐸𝜆(𝐴)𝑛+1 ⊂ 𝐸𝜆(𝐴). 

Proof: Suppose that 𝑋 ∈ 𝐸𝜆(𝐴) . So that satisfy 

formula (1). 𝐴𝑋 = 𝜆𝑋𝐴. Thus  𝐴𝑋𝑛+1 = 𝜆𝑛+1𝑋𝑛+1𝐴 

since 𝜆𝑛 = 1 for some 𝑛 ∈ 𝑁 . So 𝐴𝑋𝑛+1 = 𝜆𝑋𝑛+1𝐴. 

Hence 𝑋𝑛+1 ∈ 𝐸𝜆(𝐴). Then 𝐸𝜆(𝐴)𝑛+1 ⊂ 𝐸𝜆(𝐴). ∎ 

Lemma (2.11) : Suppose that 𝐴 is bounded operator 

on a Hilbert space ℋ, such that 0 ∈ 𝐸(𝐴), then: 

(1) 𝐴 is not injective. 

(2) 𝐴 is not invertible. 

(3) 𝐴∗ does not have dense range. 

(4) 𝐴 is not unitary. 

Proof: Suppose that 0 ∈ 𝐸(𝐴) . Then there exists 

operator 𝑇 ≠ 0  satisfying, 𝐴𝑇 = 0 . So that 𝐴  is not 

injective. For the proof of (2) follows from (1). 

(3) Suppose that 𝐴∗ has dense range, since ker(𝐴) =
𝑅𝑎𝑛𝑔(𝐴∗)⊥ . Then ker(𝐴) = {0} . Hence 𝐴  is 

injective, this contradict (1). 

(4) If 𝐴 is unitary operator, then 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼. This 

contradict (2). ∎ 

  We see in theorem (2.5) that the extended 

eigenvalues of the unilateral shift operator is 𝐸(𝑈) =
{𝜆 ∶  |𝜆| ≥ 1} . However the 𝑈  is not invertible. 

Therefore the converse of lemma (2.10) is not true. 
3.  Conclusion  
This paper has presented a deserving sets of operators 

called extended eigenvalues and extended 

eigenvectors. Some of the characters of unilateral and 

bilateral operators were studied and fined. The 

described work is focused on relationship between 

concepts and properties of extended eigenvalues and 

extended eigenvectors. As for future work is 

concerned, generalized of set for two operators. 
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 بعض الخواص حول القيم الذاتية الموسعة والمتجهات الذاتية الموسعة
 نس عباس حجابأ، ليث خليل شاكر 

 ، تكريت ، العراق جامعة تكريت , كلية علوم الحاسوب والرياضيات ,قسم الرياضيات 1
 ، تكريت ، العراق جامعة تكريت, الصرفةكلية التربية للعلوم , قسم الرياضيات 2
 

 الملخص

مع  𝐸𝜆(𝐴)بعض المفاهيم والخواص للمجموعة بينت الدراسة  كما موسعة والمتجهات الذاتية الموسعة.القيم الذاتية ال تهدف الدراسة الحالية لتبيان
 .ℓ2على الفضاء  𝐸(𝐵) و 𝐸(𝑈)الذاتية لمؤثر النقلة  ك وجدنا مجموعة القيمبعض النتائج المهمة, وكذل


