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Introduction

Throughout the following paper R represents a
commutative ring with identity, and each R-module
are left until. A proper submodule A of an R-module
M is known a small if A+ B # M for each proper
submodule B of M [1]. A non —zero module M is
known hollow module if each proper submodule of M
is small [2]. A proper submodule N of an R-module M
is known a maximal submodule in M, if K is a
submodule of M with N < K, so K=M [3]. An R-
module M is known local if M has a unique maximal
submodule which contains each proper submodules
of M [4]. In this paper, we give a strong form of
hollow module, we call it L-hollow module which is
a module has a unique maximal submodule which
contains each small submodule of M. this work
contains three sections. In section one, we give the
definition of L-hollow modules a strong form of
hollow modules we investigate the properties of this
class of modules . In section two we investigate
some conditions under which hollow modules and L-
hollow modules are equivalent. The third section
investigate the relation between the L-hollow
modules and other modules such as amply
supplemented, indecomposable modules and lifting
modules.

To consider R is a commutative ring with unity, M be a nonzero unitary

left R-module, M is known hollow module if each proper submodule of M
is small. L-hollow module is a strong form of hollow module, where an R-
module M is known L-hollow module if M has a unique maximal
submodule which contains each small submodules. The current study deals
with this class of modules and give several fundamental properties related

1. L-Hollow Modules:_In this part the study present
the concept of L-hollow modules, and study the
basic properties of this kind of modules
Definition(1.1): An R-module M is called L-hollow
module if M has unique maximal submodules which
contains each small submodules of M.

Example: The Z- module Z,is L-hollow module,
while the Z-module Zg is not L-hollow module.
Remarks with Examples (1.2):

1. Each L-hollow module is hollow module.

Proof: Assume that M is L-hollow module, then
there exists a unigue maximal Submodule contains
every small submodule say N in M. And since N is a
submodule of M. Then each small is contains in M.
By definition hollow module so, N is a small
submodule of M, implies that M is hollow
module.while the converse remark (1,2)(1) is not true
in general, for example, Zg’ is hollow module, while
is not L-hollow modules.

2. Each local module is L-hollow module, while the
converse is not true in general. For example Z, @ Q
is L-hollow module. While is not local module since
{0}PQ is a unique maximal submodule of Z, @ Q
and {0} @ {0} is a small submodule of Z, @ Q and
contained in {0} Q, but Z, @ {0} is a proper
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submodule of Z, @ Q, but Z, & {0} is not contained
in{0}® Q.

3. Each simple module is not L-hollow module, for
example the Z-module Zs is simple module, while is
not L-hollow module, and each L-hollow module is
not simple module, for example the Z-mod. Zg is L-
hollow module, while is not simple module.
Throughout the following proposition the study
present some of the basic properties of L-hollow.
Modules.

Proposition(1.3): Epimorphic image of L-hollow
module is L-hollow module.

Proof ; Suppose that M; L-hollow module, let f
:M;— M, be an epimorphism with M, is R-module.
Assume that N is a unique maximal submodule of
M, and N + K = M, where K is a proper submodule
of M,. Now, f =1 (N) is a unique maximal submodule
of M, since otherwise f~*( N') = M; hence f (f*
(N)) = f (M;) = M, implies that N =M, which is
contradiction. With N is a unique maximal submodule
of M,, thus f~*('N) is a unique maximal submodule
of M,. Since M, is L-hollow module, therefore f~1
(N ) contains each small submodule of M; hence f
(f=* ( N)) is a small submodule of f (M,), that is to
say that N is a small submodule of M,. Therefor M,
is L-hollow module.

Proposition(1.4): To consider K small submodule
of module M, if M /K is L-hollow module, then M is
L-hollow module.

Proof : Assume that M /K is L-hollow module, with
K is a small submodule of M then there exists a
unique maximal submodule N /K of M /K with
A+ L =M where L is asubmodule of Mand A is a
proper submodule of M then (A4 L)/K = M/K,
implies that
((A+K)/K)+ ((L+K)/K)=M/K since
(A+K)/K is proper submodule of N /K and M /K
is L-hollow module, then (A+K) /K is small
submodule of M/K. Thus (L+K)/K=M /K,
soL + K =M, since K is a small submodule of M,
then L = M. Therefore M is L-hollow module.
Corollary (1.5): To consider M an R-module, if M
is L-hollow module, then M /N is L-hollow module
for each proper submodule N of M.

Proof: clear by(prop. 1.3).

Definition(1.6): [3] A pair (P, f) is a projective
cover of the module M in case P is a projective
module and f: P - Mwhere f is an epimorphism
and kerf isasmall submodule of P (we call P it self
a projective cover of M).

Proposition(1.7):  Let f:M; — M,is projective
cover of M,, if M, is L-hollow module, then M, is L-
hollow module.

Proof : Suppose M, L-hollow module. Since
f: M; - M, is an epimorphism therefore M, / kerf is
isomorphism to M, hence it is L-hollow module and
kerf is a small submodule of M,. Thus by (prop. 1.4)
we get M; is L-hollow module.

Proposition(1.8): Let M R-module, so M is L-
hollow module, and finitely generated module if and
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only if M is a cyclic module, and has a unique
maximal submodule.

Proof : To consider M finitely generated L-hollow
module therefore M =R, +R,, +--+R, . If
M # Ry, then R, is proper submodule of M. Implies
that Ry, is small submodule of M. Hence M = R, +
Ry, + -+ Ry, . Therefore we cancel the summand
one by one until we have M = R,, for some i. Thus
M is a cyclic module and since M is L-hollow
module. So, M has a unique maximal submodule by
(def., 1.1).

Conversely, to consider M is a cyclic module having
uniqgue maximal submodule say N, so M finitely
generated. To consider L is proper submodule of M
with L + K = M where K is a submodule of M. Now,
when L is not small submodule of M implies that
K# M. So K is a proper submodule of M , K is
submodule of N and since M is finitely generated,
then K is contained in a maximal submodule. But by
assumption M has a unique maximal submodule N.
Thus L is submodule of N (L is contained in N).
Therefore L + N = N = M which is a contradiction.
Hence K = M, L is submodule of N and L is a small
submodule of M. So M is L-hollow module.
Proposition(1.9): Let N maximal submodule of a
module M. when M is L-hollow module and M/N is
finitely generated then M is finitely generated.

Proof: To consider N maximal submodule of L-
hollow module M with M /N s finitely generated.
Then M /N =R(x; + N)+R(x, + N )+ -+ R(x, +
N) where x; € M for all i =1,2,---,;n we claim that
M=Rx; +Rx, +-++Rx,. Let meM, so m +
NeM/N, implies that, m+ N=r;(x; +N)+
ry(x, + N)+ - + rp(xp + N)=ryx; + 1%, + -+
rpX,tN. This implies that m = r;x; + ryx, + - +
rnX, +n for some n € N. Thus M = ryx; + r,%x, +
-+ rpXx, + N and since M L-hollow module, so N is
a small submodule of M which implies that M =
Xy + 1%, + - 4+rpx,. Thus M is  finitely
generated.

2. L-hollow modules and hollow modules

The first section suggests that each L-hollow module
is hollow module, and we give an example shows that
the converse is not true. In this section we investigate
conditions under which hollow modules can be L-
hollow modules.

Proposition(2.1): Let M be an R-module, M isa L-
hollow module if and only if M is a hollow and
cyclic module,

Proof : Assume that M L-hollow module, so it has a
unique maximal submodule N such that N contains
each small submodule of M. To consider x € M with
x € N so Ry is a submodule of M. We claim that R,
=M. If R, # M then R, is a proper small submodule
of M , hence Ry is a submodule of N which implies
that x € N which is a contradiction. Thus R, = M, so
M is a cyclic module . Now, since M is L-hollow
module Therefore M is hollow module by (Remark.
1,2) (1).
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Conversely, Assume that M is hollow module and
cyclic module, so it is a finitely generated module and
hence M has a maximal submodule contains each
proper small submodule say N. Let L be a proper
small submodule of M. If L is not contained in N
then L+ N = M, while M is L-hollow module, so
N = M which is a contradiction. This implies that
every proper small submodule of M is contained in N,
thus M is a L-hollow module.

Proposition(2.2): Let M be an R-module, M is L-
hollow module if and only if M is a hollow module
and has a unique maximal submodule,

Proof: Assume that M is L-hollow module, so M is
a hollow module, by (Remark. 1,2) (1). And by
(definition. 1,1), so M has a unigue maximal
submodule.

Conversely, to consider M is hollow module. Such
that has a unique maximal submodule, say N, we only
have to show that M is a cyclic module . To consider
x€M and x¢ N, so Ry, + N =M and since Mis a
hollow module then N is a small submodule of M and
so, M = R, Therefore M is a cyclic module, and by
(Proposition. 2.1). Then M is L-hollow module.
Proposition(2.3): To consider M be an R-module.
M is L-hollow module if and only if it is a cyclic
module and every non-zero factor module of M is
indecomposable.

Proof ; Suppose that M is L-hollow module, so by
(Proposition. 2.1). M is a hollow and cyclic module
and by [4,Proposition. (41.4)]. Then every non-zero
factor module of M is indecomposable.

Conversely, let M be cyclic module and every non-
zero factor module of M is indecomposable, then by
[4,Proposition.(41.4)]. M is a hollow module and by
(proposition. 2.1). Thus M is L-hollow module.
Proposition(2.4): Let M be a module, M is L-hollow
module if and only if M is a hollow module and
RadM =M.,

Proof: Assume that M L-hollow module, then M is
hollow and cyclic module by (prop. 2,1). And since
M is cyclic module, so M is finitely generated , hence
RadM # M.

Conversely, let M is a hollow module and RadM =M,
then RadM is a small submodule of M. Also by
[3,Proposition.(1.3.13),P.36]. RadM is the a unique
maximal submodule of M and thus M/ Rad M simple
module and hence cyclic. Implies that M /Rad M =<
m + Rad > for some m € M. We prove that M =
Rm. To consider w € M so, w + RadM €
M /Rad M, and therefore there is, r € R such as w
+Rad M = r(m + Rad M) = rm + Rad M.  Implies
that w — rm € Rad M which implies that w — rm =
y for same y € RadM. So w=rm+y € Rm+
RadM, hence M = Rm + RadM. But RadM is small
submodule of M implies M = Rm. Thus M is a cyclic
module and by (proposition. 2.1). We get M is L-
hollow module.

Proposition(2.5): Let M L-hollow module if and
only if Rad M is a small and maximal in M.
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Proof: Suppose that Rad M is a small and maximal
submodule. To prove that M is L-hollow module, first
we want to show that RadM is a unique maximal
submodule in M. Suppose that L is another maximal
submodule in M, then M = L + Rad M, while Rad M
is a small submodule which implies that L =M,
which is a contradiction. Thus Rad M is aunique
maximal submodule in M. We claim every small
submodule of M is contained in Rad M. Let N be a
small submodule of M, if N is not contained in RadM,
then N+ RadM =M. while RadM is a small
submodule of M which implies that N = M so, have
a contradiction. Therefore M is L-hollow module.
Conversely, suppose that M is L-hollow module so,
by (Remark 1.2) (1), therefore M is hollow module
and by ([3],Lemma 1.3.13,P.36). Then Rad M is a
maximal submodule. Since M is L-hollow module.
Thus RadM is a unique maximal submodule of M,
hence RadM +N = M for seme proper submodule
N of M. If RadM is not small submodule of M then N
is a small submodule of M. thus RadM = M which is
contradiction by [4,Prop. (41.4)]. Hence RadM is
small submodule of M.

3. L-hollow modules and some other modules

This section tackles the relation between L-hollow
module and other modules such that amply
supplemented , indecomposable and lifting modules,
Definition(3.1):[4] A module M is called amply
supplemented, if for every two submodules U,V of M
such that M = U + V, there exists a supplement V, of
UinM,suchthatv;, < V™.

Example: The Z-module Z, is amply supplemented.
while the Z-module Z,, is hot amply supplemented.
Proposition(3.2): Every L-hollow module is amply
supplemented.

Proof: Let M L-hollow module and to consider U is
a unigue maximal submodule of M. Since M is L-
hollow module, sowe have U+ M =Mand UNM =
U is a small submodule of M. Therefore M is amply
supplemented.

Remark(3.3): The converse of (Prop. 3,2) is not
true in general, as given in this example, the Z-
module Z, is amply supplemented, while not L-
hollow module.

Definition(3.4):[1] An R-module M is
indecomposable if M # 0and the only a direct
summands of M are <0> and M. Implies that M has
no a direct sum of two non-zero submodule.
Example: The simple module is indecomposable,
while the Z-module Z, is not indecomposable.
Proposition (3.5): Every L-hollow module is
indecomposable.

Proof ; Let M L-hollow module then there exists a
unique maximal submodule N such as contains each
small submodule of M, suppose that M is
decomposable, so there are a proper submodules K
and L such that K,L. are submodule of N and M =
K& L. But M is L-hollow module then either L is a
small submodule of M with L is submodule of N
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implies that K =M or K is small submodule of M
with K is submodule of N implies that L. = M which
is a contradiction. Then M is indecomposable.
Proposition(3.6): Let M a cyclic module, M is L-
hollow module if and only if every non-zero factor
module of M is indecomposable,

Proof: Suppose M /A is non-zero factor mod. of
M. Since M is L-hollow module therefore M /A is L-
hollow module by(corollary 1.5). And by (prop.3.5)
we get M /A is indecomposable.

Conversely, to consider N maximal submodule of M
and to consider L is a submodule of N. Suppose that
M=L+K , where K is a submodule of M
by[3,Lemma(1.3.10), P. 34], we get M /(L NK) =
(M /L) @ (M /K). While M/(LNnK) is
indecomposable then either M /L =0 or M /K = 0.
Since L is a submodule of N, and N is a submodule of
M. Hence L is a proper submodule of M. Then
M/L #0 therefore M /K=10. Hence M=K
Therefore L is small submodule of M. Thus M is
hollow module and since M is acyclic module so by
(prop.2.1). Thus M is L-hollow module,
Definition(3.7): [5] Let M be a module, M is said to
be lifting module (or satisfieds D1) if for each
submodule N of M there are submodule K and L of M
where M = K@ L, K is a submodule of N and N n K
is a small submodule of K.

Example: The Z -module Z; is lifting module. While
the Z-module Z,, is not lifting module.

Proposition (3.8): Every L-hollow module is lifting
module,

Proof: Let M be L-hollow module, then there exists a
unique maximal N of M contains all small
submodule, thenM = M@{0} where {0}is a
submodule of N, NnM =N and since M is L-
hollow module .Therefore NN M =N is a small
submodule of M. Thus M is lifting module.
Remark(3.9): The converse of proposition (3.8) is
not true in general, as given in this example . The Z-
module Z,, is lifting module. While is not L-hollow
module,

Proposition(3.10): Assume that M a cyclic
indecomposable module, if M is lifting module, so M
is L-hollow module,

Proof: Suppose that N is a proper submodule of M,
since M is lifting module so, M = A + B, where A is a
submodule and N N A is small submodule of A. While
M is an indecomposable, thus B =0 and hence
A=M. Which NNnM=N, so N is a small
submodule of M. Hence M is hollow module and
since M is cyclic module. So M is L-hollow module
by (prop. 2,1).

Definition(3.11):[7] Let N and L be submodules of
M. N is said to be a supplement of L in M if it is
minimal with respect to the property M = N + L".
Proposition(3.12): Let K be a maximal submodule
of mod. M. If L is a supplement of K in M, then L is
L-hollow module.
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Proof: Suppose that L. a supplement of K and to
consider L, is proper sub module of L with L; +
L, = L for some submodule L, of L. Now,k+ L =
M = K +L; +L, =Mand L;is a submodule of K,
since otherwise K. L, =M and K is maximal
submodule of M we get L, =L, which is a
contradiction. Thus K+ L, =M and since K is
maximal submodule of M we get L, = L. Implies that
L is a hollow module.To show that L is a cyclic
module, let x € M and x ¢ K then R, + K= M and
this implies that R, = L by minimality of L. And
by(prop. 2,1), thus L is L-hollow module
Definition(3.13):[6] A submodule N of anR-
module M is said to be coclosed in M if N /Kis a
small submodule of M /K implies that N = K for
each submodule K of M contained in N.

Example: <2> = {0, 2,4} is coclosed submodule in
the Z-module Zg.

Proposition(3.14): If M is L-hollow module then
each non-zero coclosed submodule of maximal
submodule of M is L-hollow module,

Proof: Assume that M L-hollow module and to
consider N be a unique maximal submodule of M.
Let A be a non-zero coclosed submodule of N,
suppose that L is a proper submodule of A. Since M is
L-hollow module thus L is a small submodule of M
contained in N. And hence A is coclosed submodule
of M. Thus L is a small submodule of A. Hence A is
L-hollow module,

Proposition(3.15): Suppose that A a submodule of
an R-module M. If A is L-hollow module, so either A
is a small submodule of M or coclosed submodule of
M, while not both.

Proof: Assume that A is not coclosed submodule of
M. To prove that A is a small submodule of M, then
there is a proper submodule of M /B. While A is L-
hollow module so A is hollow module by(Remark
1.2) (1). Then by[4,prop(19. 3)] we get B is a small
submodule of A and hence A is a small submodule of
M by [4,prop(19. 3)]. Now, we want to prove A is not
coclosed and A is a small submodule of M we must
show that A is zero submodule of M. Since A is L-
hollow module then A is not zero submodule.
Proposition(3.16): Let M be a cyclic module, and let
f:P—M be a projective cover of M and then the
following statements are equivalent.

(1) M is L-hollow module.

(2) M is hollow module.

(3) P is hollow module.

(4) P is indecomposable and supplemented.

(5) End (P) is local ring,

Proof: (1) = (2) clear by(Remark 1,2)(1)

(2) = (3) To consider M hollow module and since
f:P— M is an epimorphism, so P /kerf is
isomorphism to M and therefore a hollow module and
since kerf is small submodule of P, so P is a hollow
module by[3,prop(1.3.3)P.31].

) = @ clear by [3,prop(1.3.5)P.32] and
[3,prop(1.3.9)P.34].
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(4) = (5)
To consider g : P — P is a homomorphism then we
have two cases.
Case 1:g is onto. Since Pis a projective module
consider this diagram:

D

Jh I

g
P——>P

Where [: P — P is the identity homomorphism and
there is a homomorphism h:P — P where foh=I ,
implies that g has a right inverse, this implies that
P = kerg @ h(P), but P is indecomposable by (4).
Then kerg = 0, thus P = h(P). Then g is one to one.
Hence g is an isomorphism.
Case 2: g is not onto.We know that P = g(P) +
(I—g) (P), P is amply supplemented by[3, prop
(1.2.12)P.25], then there is a supplement K of g(P) in
(I-g) (P). implies that P = g(P) + K and g(P)n K is
a small submodule of K, and there exists a
supplement L of K in g(P). Implies that P = L+ K
and L n Kis a small submodule of K. Now, L and K
are matual supplements and hence( L N K)=0. so
P=L @ K, but P is indecomposable and K # 0 then
K=P. Now, K is a submodule of (I —g) (P) this
implies that (I — g) (P) =P. Implies that (I- g) (P) is
onto and by the previous argument I — g is an
isomorphism. (5)=(1)
To explain that M is a hollow module we need only
to show that P is hollow by [3,prop(1.3.3)P.31].
Define g : P — P/(LNK) as follows. For x EP, X = s
+tforsomeselLandte K. Setg(x)=s+LNK, g
is a well defined and homomorphism and since P is a
projective module, there is a homomorphism y: P —
P where this diagram is commutative:

P

31/&@
P¥ 7 YP/(PNK)
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