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The current study deals with the dynamical behavior of three cubic

functions in the complex plane. Critical and fixed points of all of them
were studied . Properties of every point were studied and the nature of
them was determined if it is either attracting or repelling. First function
f(z,a) = az(1 — z%) such that a,z € C have two critical points

Zyp, = 1% and three fixed points z; =0,z =+ /“7_1 such that
z, = 0is attracting when|a| < 1 is origin point As shown in figure

(2).And z,3 =+ /%—1 are attracting when |3 — 2a| < 1 is the region

specified by open disc |3 —2a| <1 shown in figure (1.(c)).Second
function f(z, @) = az® + (1 — a)z such that a, z € C, have two critical

points z;, = + /“3—;1 and three fixed points z; = 0,z,3 = +1 such

that z, = 0 is attracting when |1 —a| <1 and that its path is to the
origin point as shown in figure (4).And z,; = +1 are attractive when
|[2a + 1| < 1 represents the open disc shown in the figure (3.(c)).Third
function f(z,a) = az® such that a, z € C, have one critical point z = 0
and three fixed points z; = 0 is attracting that is path is the origin point

andz, ; = \/% are repelling as shown in figure (5). And all 2-cycles of

f(z,a@) = az? are repelling and unstable .

1. Introduction

Nonlinear systems have played an important role in
the study of natural phenomena because Nonlinear
dynamics is concerned with these systems whose
time evolution equations or differential equations
such as the dynamical variables describing the system
properties appear in the equation in a nonlinear form
[1] and many engineering, social, and biological
phenomena are dynamic, and these Phenomena can
be modeled as dynamical systems [2]. Most
dynamical systems are presented by difference
equations or ordinary differential equations.
Generally, these systems are nonlinear and contain
various parameters. Little modification on their
Parameters values may give big effects on the system
behaviors. The main problem is determining a
manner for analyzing such a dynamical system. A
large number of proposed methods have been found
to analyze nonlinear  dynamical  systems.
Analytically, the solution for most nonlinear

dynamical systems cannot be acquired. When the
system parameter changes slightly, the properties of
the solution to the Dynamical system may change.
The phenomenon is named bifurcation, as a Chaotic
state or from a stable equilibrium state to oscillating
motion. The analysis system is a manner for gaining
deep insights into the essential properties of
dynamical systems. Additionally, bifurcation analysis
enables us to determine the total behavior of the
solution in the large, the range of a parameter over
which a system behaves stable, and the transition
mechanisms of the dynamic responses [3]. If the
parameter of the system is changed, then, a
bifurcation occurs as a system which is a qualitative
change in the dynamics. A bifurcation diagram
presents the potential long-term values a system
variable can gain a function of a parameter of the
logistic map chaotic dynamical discrete systems
classes of dynamical systems. In the last two decades,
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the study of fixed points was studied and their
properties were studied and nature was either
attracting or repelling. A lot of research has been
presented in this area where fixed points, their
characteristic and schemes have been functions in the
real plane, Dynamical systems has acquired much
attention. The utilize of the concept “chaos” was
firstly presented into dynamical systems by Li and
Yorke (Li and Yorke, [4] for a Map. Zhou presents a
chaos definition for a topological dynamical system
on a general metric space (Zhou [5]) based on the

definition of Li and Yorke. Another explicit
Definition of chaos belongs to Devaney
(Devaney[6]). Lots of manners quantitative

measurement of complicated or chaotic nature of
the dynamic are found for more specifics , see
[1]1[7]- In this paper we were presented a set of cubic
functions in the complex plane and studied their fixed
points and their properties.

2. Preliminaries

This section consists of the basic definitions and
theorems without proof that which we have used in
this paper.

Definition 2.1 (Discrete Dynamical System) [8]

A discrete dynamical system is a study of how things
change over Time. A discrete dynamical system on x
is just a map f:x — x.This map describe the
deterministic evolution of some physical system: if
the system is in state x at time t. then it shall be
f(x) is in the time t+ 1. Study of a discrete
dynamical system is concerned with iterates of the
Map : the sequence x, f(x), f121(x), ... Is called the
orbit of x. The definition of the orbit, will be
give later on

Definition 2.2 (Orbit)[4]

Let f(x) a defined function in a domain. The
function's orbit, referred to as f™(x) , is created for
point x by repeating a function starting from that
point to obtain a list of numbers. The front orbit of x
is a set of points into the sequence x , f(x), f(f(x)),

f (f(f(x))), more concise written
x,f(x), f2(x), f3(x),...and can be referred to as
f™(x) for n € N.

Definition 2.3(Fixed point) [12] [11]

A point x* is said to be fixed point of the map f or
an equilibrium point if f(x*) = x*.

Remark 2.1

Geometrically , the fixed points of f(x) are the
intersection points of the Graphs of the two
curves y= f(x) and y = x.

Theorem 2.1 [12]

Suppose that f is continuous at ¢ , and let x be
in the domain of f .If fll(x)>cas n—- o,
then c is a fixed point of f .

Definition 2.4 (Hyperbolic)[11]

A fixed point ¢ of f is hyperbolic if |f'(c)| #
1. If |f'(c)]=1 it is non-hyperbolic. The
reasons for these names becomes apparent when
one looks at the fixed points of maps f:R? —

TJPS

R? Thus if ¢ is anon- hyperbolic fixed point, then
f'tcy=1o0r f'(c)=-1 , the graph of f(x)
eithers meets the line y = x tangentially, or at 90°.
Definition 2.5(Asymptotically) [11]
Letp be fixed point of f:
a- point p is an attracting fixed point of f provided in
which an interval (p-€,p + €) containing p such that
if x is in the domain of f and in (p—e,p +¢),
then fI™Ml(x) > p as n increases without bound
.(Such a point is also called asymptotically stable
in the literature).
b- point p is a repelling (unstable) fixed point of f
provided that there is an interval (p—e,p+¢€)
containing p such that if x is in these domain and in
(p—€,p + €) butx+ p, then [f{(x) —p| > |x—pl
c- The point p is an asymptotically stable fixed
point if it is both stable and attracting .
Theorem 2.1 [6] [7]
Suppose that f is differentiable at fixed point x .
- If |[f'(x)] <1, then x is attracting (stable).
- If |[f'(x)] > 1, then x is repelling (unstable).
- If |f'(x)]=1,then x can be attracting ,
repelling or nether .
.Definition 2.6(Periodic orbit) [6]
Let x, be in the domain of f.Then x, has period
n or (is a period-n point ) if f™(x,) = x, and if
in addition  x,, f(x), f2(x0), ..., fIPU(x, Hare
distinct. If x, has period n, then the orbit of x,
, which is {x,, f(x0), f2(x0), .., f"U(xy )} is a
periodic orbit and is called an n-cycle. A point x
is eventually periodic of period n if x is not
periodic but there existm > 0 such that f**(x) =
fi(x) for all i >m,that is fi(x) is a periodic
fori = m..
3. Cubic Functions in the Complex Plane
This section deals with the study of the dynamical
behavior of three cubic functions in the complex
plane.
1- f(z,a) =az(1—2z%) ,a€Cz€eC
2-f(z,a)=az?+(1—a)z ,a€Cz€EC
3-f(z,a) =az® ,a€CzeC
Critical points and fixed points were studied and their
properties were studied and their nature was either
attracting or repelling.
3-1 Fixed points of cubic functions.
In this sub section, fixed points and their properties
of each function have been discussed and the
diagrams for different value of a have been drawn .
Example 3.1
Consider the function f(z,a) = az(1 —2z?%),z,a €
c @
The function f(z, a) is analytic function, the roots
of f'(z,a) =0 its critical points f'(z,a) = a —
3az2=0

3az? =«
2 1

T3
z= $% , the critical points of f(z «) ,The fixed
points for the function f(z,0)is f(z,@) =z

V4
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az—az® =z
az—az®—z=0

z(a—az>—-1)=0
z=0 or

a—az?—1=0 then z?=-—"7

= z=$[a7_1 so the fixed points for the
function f(z, )

z1=0
a-1
Zy = 7
a-1
Z3 = — |[—

And prove it attractive should be achieved below

If'(0,0) <1 (2)

()< o
(2

from the equation (1) f'(z,a) = a —3az? (5)
we make up fixed points in the equation (5), we
get

f0a)=a

f’(?\/%,a) =3-2a

And applying equations (2), (3) and (4), we get
o] <1
3—-2a|<1

<1 4
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The set of all points « such that , The
function f(z, &) defined by the equation(1)has fixed
points , attractive and non-zero is the region
specified by the open disc|3 — 2a| < 1 shown in
figure(1.(c)).
proof: Let f(z a) be the function which defined
in the equation (1), The non- zero fixed points of

the function f(z,¢) are z=+ /‘%1 JAnd  be
attractive if

f'(?/‘%l,a) =3-2a|<1=> |1-
(Ra—2)| <1,Let w complex  number, and

suppose that w =2a — 2. |1 —w| < 1,In complex
plan |1 —w| represents a circle with radius 1
and center (1,0) . It is expressed by polar
coordinates as r = 2cos#, And shown in figure
(L@)Butw=2a-2=a=>+1

This mean values a, Represents the circumference
of the circle centered (Z ,0) and radius % is
shown in figure (1.(b)).Finally, |3 —2a| <1 in
complex plan represent all values of «a in C
Which represents the open disc shown in the
Figure (1.(c)).

F(z)

z nl

N\,
\_/

. ‘0 .

{a) z

F(z) /

_1.5_2 : - Fz)
(b)

Fiz)

F(z)

{c}

Fig. 1: Aset of points a in complex plan such that f(z, &) has non-zero fixed points, attractive.

Remark 3.1

The fixed point z; = 0 is an attractive point, and that its path is to the origin point, As shown in

Figure (2).
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F(z}

F{z)

Fig. 2: Aset of points ain complex plan, z; = 0 fixed point and attractive.

Example 3.2
Consider the function f(z,a) = az®+ (1 —a)z,

such that z,a € C (6).
The function f(z,a) is analytic and differentiable
, the roots of f'(z,@&) =0 its critical points
f'(z,a)=3az*+(1—-a)=0
3az2+(1—a)=0
2 _a-1

3a

z=+ /“3—;1 the critical points of f(z, @)
The fixed points for the function f(z, @) is
f(z,a) =2z
azi+(l-a)z=z
az®+z—az—z=0
az®i—az=0
az(z?—1)=0
either z=0, a#0
z=%F1
So the fixed points for the function f(z, a)
zy=0
z, =1
zz =—1
And prove it attracting should be achieved below

If'Oa)]<1 (7

If'La)l <1  (8)

If'Lal <1 (9)
From the equation (6)  get
(1-a) (10
we make up fixed points in the equation (10), we get
f'(0,a)=1—a and f'(¥l,a)=2a+1 And
applying equations (7),(8) and (9), we get |1—
al <land|2a + 1] < 1and by theorem (2-1), we
get |f'(FLa)| <1 and |2a+1| <1 then|1—
(—2a)| <1 Let w be a complex number , and
suppose that w = —2a |1 —w| < 1 in complex plan
|1 — w|, represents a circle with radius 1 and center
(1,0). It is expressed by polar coordinates as
r=2cosf which |[1— w|=1 if and only if
r=2cosf , And shown in figure (3.(a)), But
w=-2a =a= % This means values
a , Represents the circumference of the circle central
(_71,0) and radius % , is shown in figure (3.(b))
Finally, [2a + 1] < 1 in complex plan represent all
values of a in C which represents the open disk
shown in the Figure (3. (c)) .

f'(z,@) = 3az? +
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F(z)

Fiz)

F(z)

" Flz)

]

z (b)

Fig. 3: A set of points a in complex plan such that f(z,a) has non-zero fixed points, attractive .

Remark 3.2
The fixed point z; = 0 is an attracting point, and
that its path is to the origin point, as shown in Figure

(4).

F(z)

| \_/

F(z)

1

Fig. 4: A set of points (1-a) in complex plan, z; =0
fixed point and attractive.

Example 3.3
Consider the function f(z,a) = az3such

a,zeC (11)
The function f(z, @) is analytic function, the roots
of f'(z,a) =0, its critical points. f'(z,a) =
3az2 =0 = z2=0 = z =0, the critical points
of f(z,a) and The fixed points for the function

fz,a) =2z

az® =z

az®—z=0

z(az?-1)=0
githerz=0o0r z=%

1
+\/_E ,
the function f(z, a)
Zl = 0

that

So the fixed points for

Z3 = ——
Va
And prove it attractive should be achieved below
Foal<1 (12

I (Fa) <1 (13)
f (Za)l<1 (4
from the equation (11) f(z,a) = 3az? (15)
we make up fixed points in the equation (15) we get
f0,a)=0
(¥ pa)=3
And applying equations (12), ( 13) and (14), we get
If'(0,0)] =0<1 and |f’ (?\/%a)| =3>1,The

fixed pointz;, =0 is an attractive point, and that
its path is to the origin point.

Flz)

F(z)

1

Fig.5: And the fixed point z,3 = $\/E

repelling fixed points.

are an

Example 3.4
Find the 2-cycles of f(z,a) = az3 such that

a,z € C, and determine their stability.
Solution: To find the 2-cycles , we solve
equation f2(z,a) = z
Hence f%(z,a) = f(f(z,a))
a*z?—z=0
Z(a*z8—1)=0
z(a?z* — 1) (a?z*+1) =0
z(az? — D(az? + D(a%z*+1) =0

the

(16)
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And divide all the boundaries of the equation
(16) on z(az?-1), to eliminate the effect of
fixed points of the function f(z,a) for values

z=0andz = ?%E , We get then the equation
(az?+ 1) (a?z*+1) =0
az?+1=0
22 == (17)
The two roots of equation (17) are z;, z,
L 13

le\/_a y Zzz_\/_a
a’zt*+1=0

-1
2425 (18)

The four roots of equation (18) are z3, z,, z and

Ze
Z3 = L Zy = d
3 = a ' 4 — a

i3/2 i3/2

Va %6 T TG
Hence, the 2-cycles are {z;,z,},{z3, 2,} and

5 5
If (2 @).f' (23, 0)| = 32> 35| =9 > 1
If (25, @).f'(z4, 00| = |3~ .3a| =9 >1
A '

If (25, @).f'(z6,0)| = 32> 35| =9 >1
Then all 2-cycle are unstable.

Remark 3.3

Zg =
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