Structures of Pseudo - BG Algebra and Sime pseudo – BG - Algebra
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ.1 (1980), 125-130.
MR 81k:06018a. Zbl 0434.03049.
[2] K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math.
Japon.1 (1978),1-26. MR 80a:03081. Zbl 385.03051.
[3] Q. L. Hu, X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ.2 (1983),part 2, 313-320. MR 86a:06016. Zbl 579.03047.
[4] Y. H. Kim, K. S. So, On minimality in pseudo-BCI-algebras, Commun. Korean Math. Soc.27 (2012), 7-13. doi:10.4134/CKMS.2012.27.1.007. [5] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon.4 (1985), 659-661. MR 87d:06042. Zbl 583.03050.
[6] N. Joseph, S. A. Sun, S.K. Hee, ON Q-ALGEBRAS, Hindawi Publishing Corp, IJMMS.27:12 (2001), 749-757 PII.S0161171201006627. http://ijmms.hindawi.com.
[7] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras, an extension of BCK algebras, in: Proc. of DMTCS01: Combinatorics, Computability and Logic,Springer,London.(2001) 97-114.
[8] W. A. Dudek, Y. B. Jun, Pseudo-BCI-algebras, East Asian Math. J.24
(2008), 187-190.
[9] G. Georgescu, A. Iorgulescu, Pseudo-MV-algebras, a non-commutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May.1999 1999, 961-968.
[10] G. Georgescu, A. Iorgulescu, Pseudo-BL-algebras, a non-commutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA; Slovakia, February. (2000), 90-92.
[11] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math.52 (2012), 73-90.
[12] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput.19 (2012), 461-474.
[13] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japon., 1(1998), 347-354.
[14] K. J. Lee, Ch. H. Park, Some ideals of pseudo-BCI-algebras, J.Appl.Informatics.27 (2009), 217-231.
[15] Y. B. Jun, H. S. Kim, J. Neggers, Pseudo-d-algebras, Information Sciences.179 (2009), 1751-1759. doi:10.1016/j.ins.2009.01.021.
[16] Sh. A. Bajalan, S. A. OZBAL, Some properties and homomorphisms of pseudo-Q algebras. J. Cont. Appl. Math. V. 6, p (3-17) (2017).
[17] J. Neggers, H.S. Kim, On B-algebras, in preparation.
[18] M. A. Chaudhry, On BCH-algebras, Math. Japonica.36 (1991), 665-676.
[19] S. S. Ahn, H. S. Kim On QS-algebras,J. Chungcheong Math. Soc.12. (1999), 33-41.
[20] C. B. Kim and H. S. Kim, ON BG-ALGEBRAS, Demonstratio Mathematica, Vo. XLI , no. 3, (2008)