Electronic transport study for SF6 Plasma
Main Article Content
Abstract
Determination the electron transport parameters, (drift velocity ( ) , mean electron energy ( ), diffusion coefficient (D), mobility ( ) and ionization coefficient ( ) ), in an attempt to show the influence of the presence of dust on their behavior in a direct current low pressure SF6 glow discharge .The Boltzmann Transport Equation (BTE), using two-term approximation are solved self-consistly. Making use of simulation model program for the numerical finite element method (FEM) of the boltzman equation to calculate the electron energy distribution function and the transport parameters in the range of reduced electric field E/N (300_1000 Td). As well as evaluated the electron temperature in pristine and dusty plasma and dust surface potential at E/N (40 Td) .
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Lieberman, M. A. and Lichtenberg, A. J., (2005), “Principles of Plasma Discharges and Materials Processing”, Second Edition, John Wiley and Sons, Inc., Hoboken, New Jersey.
[2] Makabe, T. and Petrovic, Z., (2006), “Plasma Electronics”, CRC Press. Taylor and Francis, New York London.
[3] Lagushenko, R. and Maya, J., (1984), “Electron swarm parameters in rare gases and mixtures”, J. Appl. Phys. Vol.55, 3293.
[4] Kawabe, T. and Hayashi, T., (1998), “Plasma Physics and Plasma Technology”, Physics Scripta, Vol.75, 12-14.
[5] Bowden, M. D., Tabata, R., Suanpoot, P., Uchinco, K., Muraaoka, K. and Noguchi, M., (2001), “Measurements of Electron Energy Distribution Function in an Ar/CF[sub4] Inductively Coupled Plasma”, J. Appl. Phys., Vol.90, 5.
[6] Capitelli, M., Celiberto, R., Gorse, C., Winkler, R. and Wilham, J., (1987), “Electron Energy Distribution Functions in He – Co Radio-Frequency Plasmas: The Role of Vibrational and Electronic Superelastic Collission”, J. Appl. Phys., vol.11, 4398-4404.
[7] Cui, C. and Goree, J. A., (1994), “Fluctuations of the Charge on a Dust Grain in a Plasma”, J. IEEE Transaction on Plasma science, Vol.22, no.2.
[8] De-Zhen, W., Dong, J.Q. and Mahajan, S.M., (1997), “ A kinetic model for low pressure glow discharges in the presence of dust particles”, J. Phys. D: Appl. Phys. Vol.30, 113.
[9] Dorranian, D. et. al., (2011)., “Calculation of Electrical Potential and Dust Particle Charge in a Double Dusty Plasma Device”, J. Fusion Energ., Vol.30,16–20.
[10] Englenardt, A.G., Phelps, A. V. and Risk, C. G., (1964), “transport coefficients and cross sections in Argon and Hydrogen-Argon mixtures”, J. Phys. Rev., A:Vol.135, 1566-1572.
[11] Ferreira, C. M. and Loureiro, J. (1983), “Electron transport parameters and excitation rates in argon”, J. Phys. D: Appl. Phys., Vol.16, 1611-1621.
[12] Ahmed A. I. & Hamdon N. A. (2014), "A comparative study of electron transport coefficients in the pristine and dusty argon plasma", Indian J. of Phys. 88 (12), 1299-1303.
[13] Hagelaar, G. J. and Pitchford L. C., (2005), “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, J. Plasma Sources Sci. Technol.Vol.14, 722–733.
[14] Huxley, L. G. and Crompton, R. W. (1974), “The Diffusion and Drift of Electrons in gases”, New York, Sec.1,11 23.
[15] Runming Zhang, Lijun Wang, a) Jie Liu, and Zhuoxi Lian, (2022),"Numerical simulation of breakdown properties and streamer development processes in SF6/CO2 mixed gas", AIP Advances 12, 015003. https://doi.org/10.1063/5.0076343
[16] Chunlin Wang , Bridgette Cooper, Yi Wu, Hao Sun and Jonathan Tennyson(2021),"Why SF6 eats electrons: identifying high electrical strength molecules from their electron collision properties" Journal of Physics B: Atomic, Molecular and Optical Physics, 54 (2021) 025202. https://doi.org/10.1088/1361.
[17] Itoh, H., Miura, Y., Nakao, Y., Ikuta, N. and Togashira, H. (1988), “Electron Swarm Development in SF6 I: Boltzmann Equation Analysis”, J. Appl. D: Appl. Phys. , Vol.21., 922-930.
[18] Nasim, M. H., Shukla, P. K. and Murtaza, G., (1999), “The dynamical charging of grains in a dusty plasma enhances the shielding of test charges”, J. Physics of Plasma. Vol.6, 1409.
[19] Sukhinin, G.I., Fedoseev, A.V., Ramazanov, T.S., Dzhumagulova, K.N. and Amangaliyeva R., 15-20 July (2007), “Dust particle charging in DC glow discharge plasma”, conference 28th ICPIG, Prague, Czech Republic.
[20] Maiorov, S. A., (2012), “Characteristics of Electron Drift in the Low-Pressure Gas Discharge”, Bulletin of the Lebedev Physics Institute, Vol.39, No.2, 51–56.
[21] Wedding, A.B., Blevin, H.A. and Fletcher, J. (1985), “The transport of electrons through nitrogen gas”, J. Phys. D: Appl. Phys., Vol.18, 2361-2373.
[22] Shkarofsky I P, Johnston T W and Bachynski M P 1966 The particle Kinetics of Plasmas (Addison-Wesley, Reading, MA) pp77
[23] Shkarofsky, I. P., Johnston, T. W. and Bachynski, M. P., (1966)., “The Particle Kinetics of Plasmas”, Reading, MA:Addison-Wesley..
[24] Petrovic, Z. Lj., Dujko, S., Maric, D., Malovic, G., Nikitovic, Z., Sasic, O., Jovanovic, J., Stojanovic, V. and Radmilovic-Radenovic, M., (2009), “Measurement and interpretation of swarm parameters and their applicationin plasma modelling”, J. Phys. D: Appl. Phys., Vol.42, 33.
[25]Novak, J. P. and Frehette, M. F. (1984), “Transport coefficients of SF6 and SF6/N2 mixtures from revised data”, J. Phys. D: Appl. Phys., No.1, Vol.55, 107.
[26]Kharapak, S. A. and Morfill, G. E., (2004), “Dusty plasma in a constant electric field”, Phys. Rev.E., Vol.69, 411.
[27] Palop, J. I. F., Ballesteros, J., Colomer, V. and Hernndez, M. A., (1995), “Anew Smoothing Method for Obtaining the Electron Energy Distribution Function in Plasmas by Numerical Differentiation of I-V Probe Characteristic”, Rev. Sci. Instrum., Vol.66, 4625-4636.
[28] Settaouti, A. and Settaouti, L. (2004), “Simulation of Electron Swarm Paramaters in SF6”, FIZIKA, Vol.13, 121-136.
[29] Peava, G. V., (2005), “Sheath Phenomena in Dusty Plasmas”, Ph.D Thesis, Technishe Universiteit Eindhoven, Eindhoven.