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1. Introduction

The term of fuzzy sets was studied originally by
Zadeh in his paper [1]. Then, Chang [2], introduced
the concept of fuzzy topological space. Later, as an
extension of Zadeh’s study of fuzzy sets, Coker [3]
defined the topology of intuitionistic fuzzy sets. The
concept intuitionistic fuzzy sets was introduced by
Atanassov [4]. The expression “intuitionistic”
evaporate used in literature until 2005, when
Gutierrez Garcia and Rodabaugh [5], they suggested
that the double fuzzy set is a more appropriate name
than intuitionistic and completed that their research
project under the name " double" rather than
intuitionistic.

The goal of this present is to continue and to the
allocation study of Fatimah et al. [6,7]. Also, we
will give new definitions of double fuzzy o"-
continuous function, double fuzzy «™-open function
and double fuzzy-a™ generalized-continuous function.
We study them with various examples.

2. Preliminaries

Throughout this present paper, spaces X and Y
always means non empty sets and | is the closed
interval [0,1], 1,,=(0,1] and I;= [0,1). The class of all
fuzzy sets in X and Y are denoted by I* and 1"
respectively. By 0 and 1, we denote the smallest and
the greatest fuzzy sets on X. For a fuzzy set A, € 1%,
For two fuzzy sets p; and 9; in X where p; = {(X,
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The purpose of this paper is to introduce and study the notions of

some types of continuous functions via (ro, si)-fuzzy o™-closed sets in
double fuzzy topological space. Also, we reached some relationships
among these new types of functions and compare them with their
opposite with illustrative examples in the same space.

Hp1(X): X € X } and 8; = {(X, ps(x): X € X3}, then their
union p; V 8y, intersection p; A 8; and complement
p1° = 1- p; and the subset p, < 8, if and only if p(X) <
Us2(X) and ypo(X) = vs52(X) for all x € X, where p,={<x,
(%), 75(x) >: X € X}, 8, = {<X, pa(x), 15(x) > x € X
}. All other notations are standard notations of fuzzy
set theory.[1]

We recall the following definitions used in this paper.
Definition 2.1 [5] A double fuzzy topology (tx,7x")
on a non-empty set X is a pair

of functions 7y, 7x*: ¥ —» 1, which satisfies the
following properties:

(01) x(A,) <1 —14"(2,) foreacha, € 1%,

(02) (A1 A X)) = x(41) ATx(A) and tx*(A1AA,) <
Tx (A1) V 1" (A, ) for each

A, A, € 1X

(03) tx(Vier &) ZAier 7x(4;) and
VierTx (1) foreach A; € IX,i € T.

The triplex (X, tx,7x*) is called a double fuzzy
topological spaces (dfts, for short), and denoted by X.
Definition 2.2 [5, 6] If X is a dfts. Then a double
fuzzy closure operator and double fuzzy interior
operator of A, € 1* are defined by:

sz,rx*(hlroy s) = A {m e A <y, x(1T—py) >
7o, Tx" (1 — W) <51}

Lot C A (o s)=V {yelX pu <A, tx(ny) 2
1o, Tx (1) < 51}

%" (Vierd) <
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where 7, € g and s; € Iy with rg+ s, < 1.
Definition 2.3 Let X be a dfts A, iy € I, 1o € g
and s; € g, A fuzzy set Ay is called:

1. An (ro, s1)-fuzzy open set (ry, s;)-fo, for short) [6]
if 7y (M) >10 and 7y (A1) <s;, whenever r, € I, and
S;1Elg . A fuzzy set Ay is called an (ro, sy)-fuzzy
closed set ((ro, s1)-fc, for short), whenever tx(1-1;) >
re and ty (1-A) <s;.

2. An (ro, s1)-fuzzy a-open set ((ro, s1)-fa-open, for
short) [8], if Ay < I +(Cyr+(My, To, S1), Fo, S1)) @nd an
(ro, s1)-fuzzy a-closed set ((ro, si1)-fa-closed, for
Short)v if C‘L’,T* (IT,T* (CT,T* O‘l,rO, Sl)v lo, Sl)) <M,

3. An (ro, s1)-generalized fuzzy closed ((rq, s1) -gf
closed, for short) [9], if Cuiux(r, To, S1) < Wy
whenever < 1 , Tx(t1) =10 and Ty (1) < s1. Aq iS
called (ro, s1)-generalized fuzzy open ((ro, S1)-gf open,
for short) if (1-A,) is an (ro, S1)-gfc set.

Definition 2.4 [6] Let X and Y be two dftss. A
function f : X — Y is said to be a double fuzzy
continuous function iff t(fF(v)) > Ty (v) and 75 (F
') <1y (v) foreach vel.

Definition 2.5 [7] A subset X, in a double fuzzy
topological space (X, tx, Tx ) is called (ro, s1)-fuzzy
o™- closed sets ((ro,s:)-f a™-closed, for short) iff I
(Coxx+(MyTo, S1).Fo, S1) < p, whenever A < py and py
is an (ro, S1)-a-open for each €I, 1y € g and s, €
ls. M is called (ro, s1)-fa™-open iff 1-A; an (ro, S1)-
fa"-closed.

Definition 2.6 [7] If X is a dfts, for each A,, p, € I%,
ro € lo and s; € Iy then, the a™-Closure and a™-
Interior operator of A, is defined as:

a™ Cry oy Mas 7o, 1) = AL g € P2 < g,y s (ro,
s;)-fa™-closed}.

Moy o, o, 51) =V {uy € P4y 2y, 1y s (To,
s;)-fa™-open}.

3. Continuous Functions Via (ro, s;)- Fuzzy o™-
Closed Sets

In this section, we introduce new continuous
functions via (ro, s;)-fuzzy o™-closed sets called them
double fuzzy ao™-continuous functions, double fuzzy
a™-open functions and double fuzzy- o™ generalized -
continuous functions. After that, we get some
propositions, theorems to show the relationships
between different functions.

Proposition 3.1 Let (X, 1y, Tx ) be dfts . A, is (ro, S1)-
fa™-open in X iff pyis (ro, sy)-fa-closed set such that
M1 < 7"1 and H1 < C‘[X,TX*(ITX,TX*(}\’17 fo, Sl)! fo, Sl)
whenever, rq € Iy and s;€lg;.

Proof. A, is (ro, $1)-fa™-open then, 1-A is (ro, Sy)-fo™-
closed. So, 1-A; < U, where U is (ro, s;)-fo-open set
then, Loy oo(Ceor(1-Ag, To, S1), o, S1) S UL Put T-4 = py
and 1- Coxoxr(lexoer (M, Tos S1) 4 To, S1) < U, for each py
< )\'1 and M1 < CTX,TX*(ITX,TX*(}\‘li lo, Sl)).

& To prove 1-), is (ro, S1)-fa™-closed set. We take, A,
be (ry, sy)-fa™-open. So, for each py is (I, Su)-fa-
closed set. Put T-p; = v.

Then, T-p; > 1- Coyr(lixx(Ma Fo, S1), To, S1) therefor
T-py > Ly oo (Coxrer(T-ha Foy S1), To, S1) for each Ay <
1150, (1-Ay ) is (ro, s1)-fa™-closed.
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Definition 3.2 Let (X, 1y, ¢ ) be a dfts A, , p; € 1% 1
€ l,o, S1€l1, Aqis called an (ro, s1)-o™-generalized
fuzzy closed set (for short, ( ro, s1)-o™-gf-closed set) if
amCTX’IX*(M,rO, S1) < 153 such that A < M1 and M1 is
an(ro, s;)-fo™-open set. A, is called an (ro, s1)-a"-
generalized fuzzy open (for short, (ro, s1)-a"-gf-open
set) if 1-A; is an (ro, s;)-a™-gf- closed set.

Definition 3.3 Let X and Y are two dfts's for each
ME I, e, € o and s.€ Iy . Then a function
f: X — Y is called:

(1) A double fuzzy o™-continuous functions (df-a™-c,
for short) if f'l(plz is an (ro, sy)-fo™-open such that
Ty() > 1o and Ty () <ss.

(2) A double fuzzy o™-open functions (dfa™-open,
for short) if f(Ay) is an (ro, s1)-fa™-open inY for
each 7y (M) >1o and Ty (V) <sy.

(3) A double fuzzy-a™-closed ( df-a™-closed, for short
) if f(Ay) is an (rg, s1)-fo™-closed in Y for each tx(1-
;\'1) >19 and Tx*(i'xl) <s;.

(4) A double fuzzy o™ generalized-continuous
function ( df-a™g-c, for short) if the f(u;) is an
(ro,s1)-0m-gf-closed set in X for each ty(1-py) > 1o
and TY*(T'H]_) <s;.

Remark 3.4

1- Every (ro, S1 )-fuzzy closed set is an (ro, S1)-fuzzy-
a™-closed set.

2- Every (ro, s1)- fuzzy a™-closed set is an (ro, Sy)-o"
gf-closed set.

Theorem 3.4 Let (X, Ty, Tx ) and (Y, 7y, 7y ) be a
dfts’s. If £:(X, 1, 7x ) — (Y, Ty, Ty ) is a double
fuzzy continuous function, then f is a double fuzzy -
a™-continuous function.

Proof. Suppose that X and Y be a dfts’s, f: X—Y,
Ty(1-h) > 1o Ty (I-A) < sy Then, fH(I-A,) is (f,
s)-fuzzy closed set in X. Since every (ro, s1 )-fuzzy
closed set is (ro, 51)-fuzzy-o™-closed set so, f*(1-1y) is
(ro, s1)- fuzzy -o™-closed set in X. Therefore, f is
double fuzzy-a™-continuous function.

Theorem 3.5 Let f: X — Y be a function between
dfts’s X and Y, f is df-o™-c function iff £1(A,) is (ro
,51)-fa™-open set in X, such that 7y(Ay) > 1o, Ty (A1) <
s, whenever M€ X rg € 1,y and 1€ 1y

Proof. Suppose that f: X — Y is dfa™-c function,
Ty(A1) > 1o, Ty (M) < 81, then Ty(1-A1) > 1o and 7y (1-
M) s,

But f(I-r) = 1- (A1) is an (ro, 51 )-fa™-closed set
in X. So F1(Ay) is an (ro,s;)-fa™-open set in X.

« Suppose that f™( A;) is an (ro, s1)-fa™ -open set
in X, put puy=1-1.

So, Ty (1-(1- p)) > 1o and 7y (I- (T-py)) <s1.

Since f'(T-py) = 1- £ (uy) is an (ro, s1)-fo™- open set
in X, so fl(w) is an (ro, s;)-fo™ closed set in X.
Therefore f is df o™-c function.

Proposition 3.6 Let X and Y be dfts's. f: X — Yisa
double fuzzy-continuous function, then f is a double
fuzzy-o™ generalized-continuous function.

Proof. Let Ty (1) > 1o and 7y (1) < sy,since f is df-
c, then

tx (Fi(1) ) > 10 and 7 (Fi(uy)) <1
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Since, every an(ro,s;)-fuzzy open set is an (ro,s;)-
a"gf-open set.

That is for each 7y (u1) >roand 7y () < sy, F(w)
is an (ro,s1)- a"gf-open set in X.

Therefore, f is df-a™g-c function.

Proposition 3.7 Let X and Y be a dftss. Iff: X —» Y
is double fuzzy-a™-continuous, then f is double
fuzzy-o™ generalized-continuous.

Proof . Suppose that X and Y are dftss and f: X —
Y, Ty (I-h) > 1o, Ty (I-A) < s;. Since f is df-a™-
continuous, then

£1(T-1y) is (ro, 51)-fa™-closed set in X

Since every (ro, s1)-fo™-closed set is an (ro, s;)-a™-gf
closed set. Therefore f(1-A,) is (ro, S1)-a™-gf closed
setin X. thatis fis df-a"g-c.

Definition 3.8 Let X be a dfts and A€ I*. The o™-
generalized closure of the set A; denoted by o™
GCrxxx (Mg, To, S1) is the intersection of all (rg,sy)- -
gf closed set of X such that ;< a™ GCyy rx+ (A4, Fo, S1).
Remark 3.9 Itis clear that Ay < 0" GCpyrer (A1, o
$1) < Coxanr (A, To, S1) for each A€ 1%,

Theorem 3.10 Let X and Y be a dfts's. If f: X —
Y is df-a™g-c function then,

f(0™ GCryrxr (M, To, 1)) < Cryay(f(Ag, To, S1),

for each A€ 1.

Proof. Let A; € 1" and Cyyy+ (f(M1), To, S1) be an (ro,
s;)-fclosed setinY.

Since, f is df- a"g-c function , f'l(CTy,ry*(f(xl), ro, S1))
is an (ro, s1)-a™ gf-closed set in X.

And, A < £1(f(Ly)).

Then, &g < FY(Coyays (F), ro, S1))-

Double fuzzy continuous
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Therefore by Remark 3.9, o™ GCy +(A, o, S1) < f
1(C1y,ry* (f(}"l)v lo, 51))'

Hence, f(a" GCoyry(M, Fo, 51)) < Cayayr (1), Fo, S1)-
Definition 3.11 A dfts X is called double fuzzy
a"(tx, Tx ) 2 space (dfa™(tx, Tx )%, for short) if each
(ro,51)-a™gf-closed set in X is an (ro, s;)-fo™-closed set
in X.

Theorem 3.12 Let f: X — Y be a df-a™g-c function
and g: Y — Z is a df-c function, then gof: X— Zisa
df-a™g-c function.

Proof. Let 15(1-A) > 1o and 7, (1-Ay) < sy, since g is
df-c function and

7y (@ (1-1)) = roand 7y (g7 (1-2e)) <1

Since, (g™ (1-M)) is an (ro,s1)-a™gf-closed set, so
(gof) (I-1) = FHGH(T-M)) is an (ro,5:)-o"gf-closed
setin X. That is gof is df-a™g-c function.

Theorem 3.13 Let X, Y and Z be adfts's. If f: X —
Y and g: Y— Z are two df-a™g-c such that Y is df-o™
(ty, Tv): space, then gof: X — Z is df- o™g-c
function.

Proof. Let 75 (1-A) >roand 75 (1-A) <si, Since g
is df-a™g-c function and g™ (1-A,) is an (ro, S1)- a™gf -
closed setinY.

figi(I-Ny)) is an (ro, S1)-a™gf-closed set in X,
because fis df-a™g-c function.

(9of) M (T-1) - FYg™(T-A1) is an (ro,s1) -o™gf-closed
set. That is gof is df-a™g-c function.

4. Interrelations

The following implication explain the relationship
between different functions:

‘ Double fuzzy o®-generalized-continuous

N |

Double fuzzy -o®-continuous

Remark 4.1 The following example explain the
convers of above relationship is not true.
Example 4.2
1. Let X={p, g}, Y= {m, n} and &,, 6, are fuzzy
sets, we define (tx (), Tx=(8)) on X by:

1, if & €{0,1},

- dW=8
Tx (6) =< ,
1
2 8(x) = 8,
0, otherwise
0, if & €{0,1},
) - =8
7x (6) = 5
5800 =8,
\ 1, otherwis
Suchthat, &:(p)=04, &1(q) =04,

And, 62(p) = 0.6, 8,(q) =0.7.
Also, we define (ty (¥), Ty «(¥)) on Y by:
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1, if ¥ e{0,1}
w@)={s, YE=%, ,
0, otherwise
0, if ¥ e{01}
@) =42, W =Y,
1, otherwise
Such that, ¥;(m) = 0.6, ¥ 1(n) = 0.2 — ¥,°(m) = 0.4,
‘I—’lc(n) =0.8.

When, the function f between two dfts's (tx(8), 7x ()
) and (7y (¥), Ty (¥)) is defined by:

f: (X, %, Tx ) — (Y, Ty, Ty ) as, f(p) =m, f(g) =n.
SO: ITX,TX*(C‘cx,‘rX*( lplc l % ’ % )% l %) ‘rx,‘rx*( 81C ’ % ’ %) =
8, and, F{(¥,%) isan (1, 1)-fo™- closed set — f*(¥1)
isan (1,3 )-fo"-open set.

That is, f is df- a™c function, but f*(¥y) & 14 —
is not df-c function.

2. Let X={p, q} and Y= {m, n}, and take (zx (9),
7% (8) ) and (ty (¥), v ¥)) on X and Y
respectively, by as follow as (1), such that:

61(p) = 0.3, 61(q) =04,

82(p) = 0.7, 82(q) = 0.6,
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Wl(m) = 07, 'Pl(n) = 08,
And, ¥,(m)=0.3, ¥,n)=0.2
When, the function f between two dfts (tx (6), 7x ()
) and (ty (¥), 7y (¥)) is defined by:
f: (X, 1%, Tx ) = (Y, Ty, Ty ) as, f(p)=m ,f(g) =n

So, F{(¥1)= (o7 Gos) , F'(W1) < 682, 6, isan (£ 1)-
fa"-closed set.

(Xm Crx,tx*( f-l(qjl), % s %) = /\{62 (S |x, f-l(lpl) < 62, then
ITX,TX*(CTX,TX*( 62 ’ %1 %) %! %) = 625 62
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