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Abstract

Nonlinear partial differential equations represent the most important

phenomena occurring in the world and are encountered in various fields
of science. Generalized Burger’s-Fisher equation is very important for
describing different mechanisms. Burger’s-Fisher equation arises in the
field of applied mathematics and physics applications. This equation
shows a prototypical model for describing the interaction between the
reaction mechanisms, convection effect, and diffusion transport. In this
paper, variational iteration transform method that combines Laplace
transform and the variational iteration method, which used to obtain
approximate analytical solutions of Burger’s - Fisher equation.
Comparison of the results obtained by the present method with the exact
solution and other existing methods reveals the accuracy and fast
convergence of the proposed method.

1. Introduction

Most of the problems in engineering and science
are modeled by differential equations. Differential
equations describe exchange of energy, information,
matter, or any other quantities; often as they vary in
time and space. These equations arise in various
scientific fields such as the gas dynamics, traffic
flow, and in applied mathematics and physics
applications.
A compelling strategy is required to break down the
scientific model which gives arrangements fitting in
with physical reality. The nonlinear models of
genuine issues are still exceptionally hard to unravel
either  numerically or hypothetically, more
presumptions must be made pointlessly to make
nonlinear models feasible. As of late, much
consideration dedicated to the look for better and
more productive arrangement strategies for deciding
an answer, rough or correct, systematic or numerical,
to nonlinear models [1-5]. Finding precise or
estimated arrangements of these nonlinear conditions
is intriguing and critical.
Many methods have been developed for providing
approximate solutions of NPDEs. Some of these
methods include pseudo spectral method [6], spectral
collocation method [7], Adomian decomposition
method (ADM) [8-10], homotopy perturbation
method (HPM) [11-13], the differential transform
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method (DTM) [14-16] and variational iteration
method (VIM) [17-18]. One of these approximate
methods which have received a great deal of attention
is the (VIM). The VIM is first proposed by his paper
[19] in which the technique implemented on several
nonlinear ordinary and partial differential equations
[20-23].

The variational iteration transform method (VITM)
[24] that combines Laplace transform and Obtaining
approximate and exact solutions of linear and non-
linear differential equations by using the variational
iteration method. Applying the VITM in this paper is
mainly used to get the approximate solutions of the
generalized nonlinear Burger’s-Fisher equation that
put the interaction between reaction mechanisms,
convection effects and diffusion transports [23]. The
numerical results are compared with the exact
solutions and that obtained previously by the VIM

[25].
2. The Generalized  Burger’s-Fisher
Equations

Consider the generalized Burger’s-Fisher equation:
%"’“”Uau—%:ﬁu(l —u%),0<x<1Lt=0 (1)

ax
With initial condition

1

ux,0) = (5 +3tanh (5))°

(2)
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and boundary conditions

1

u(0,0) = (2 4+ dtanh [Z% (4 + 22 D) )], o2
0 (3)

1 a (cr+1)
u(l't) = (E tanh [2(0+1) (1 - ((r+1 + < ) t])
0 (4
The exact solution of Eq. (1) is
u(x, t) =

GHiam G50 -Gar5)d)) ©

where a, § and o are constants, Generalized Burger’s
equation will be obtained when g = 0.

3. Variational Iteration Transform Method
(VITM):

The basic idea of this method can be illustrated by
considering the equation of a general nonlinear non-
homogeneous partial ~ differential with initial
conditions as follow

Dulx, t) + Rulx, t) + Xu(x, t) = glx, t) (6)
u(x,0) = h(x),u.(x,0) = f(x)

where © is the second order linear differential

operator D = o , R is linear differential operator of
less order than D X represent the general nonlinear
differential operator and g(x,t) is the source term.
Taking Laplace Transform on both sides of Eq.(6)
L[Du(x,t)] + L[Ru(x, t)] + L[Xu(x,t)] =
Lgx 0l (7)
s2L[u(x, )] — su(x, 0) — u.(x,0) + L[Ru(x, t)] +
LINu(x,t)] = L[g(x, )] (8)
Taking Inverse Laplace transform
u(x, t) = f(x) + th(x) + 5 L L(g(x )] -
SLL(RG )] - S L LRuG, D] (9)
Derivative by % both sides of Eq.(9)

d ,_
u (6, t) = h(x) + = L7 (L {g (e 0)}) —
a0 ,_ 1
&L 1 (S—ZL{RU(X, t)}) -
a0 ,_ 1
&L 1 (S—ZL{NU,(X, t)}) (10)
By the correction function of the irrational method

Ut (6 ) = (6, 1) = [ (wn)g (x, 6) +
2 0 (S R )+ 177 (S LR (0, £))) -

(S0 9)) - k@ Ddg (D

Finally, the solution u(x,t) is given by
u(x, t) = lim,_ 4 u, (x, t)
4. Numerical Results
In this section we illustrate the ability and simplicity
of the presented method for solving the nonlinear
Burger’s-Fisher equation. Two cases will be studied:
the first case is when a = =0.01and o=1in
Eq. (1), whereas the second case is when a = =
0.001 and o = 1, for various values of x and t.
Example :

Suppose the equation of generalized Burger’s-
Fisher:

du ou 9?2
Zraut -2
at

e _ g
o =pu(l-u’®),0<x<1t=0
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With initial condition

1

1 1 —-ao o
ulx,0) = (E + Etanh (2(0’+1)))
Case l:when ¢ =8 =0.01and o = 1.
Uy — Uyy + 0.01un, + 0.01u(u—1) =0 (12)
with initial condition
u(x,0) = ———t h(%x) (13)
Taking Laplace transform on both sides on Eq.12
Llu] — L[uy,] + 0.01L[uu,] + 0.01L[u(u — 1)] =
0 (14)
This can be written as
sLu(x,t) —u(x, 0) — Llu,,] + 0.01L[uu,] +
0.01L[u(u—1)] =0 (15)
Substituting the initial condition in Eq.(15) we get

sLu(x,t) — é - %tanh(0.00ZSx) — L{u,, ]+
0.01L[uw,] + 0.01L[u(w — 1)] = 0 (16)
Llu(x, t)] = % + %tanh(0.00ZSx) + %L[uxx] —

22 Lu] - 22 LI - D] (17)
Take Inverse Laplace to Eq.(17) obtain:

1 1
u(x,t) = L1 [—] +L71! [—tanh(0.00ZSx)]
2s 2s

+ L7t (%L[uxx]> L1 (%L[uux])

i (B 01) g
=2+ étanh(0.00ZSx) +L71 (lL[uxx]) -
L (S L)) - 1 (22 Lu - D)) (19)
Derivative by % both sides of Eq.(19) we get
(6, 8) = - [(£ el = L7 (22 L] ) —
L2 fuCu -nl)] o
e, ) = o [17 (5 Tl ) = 0.01L7 (S fuuaa]) -

0017 (Cu@-DI)] =0 (1)
Making the correction function yields

Unan (1) = 1 G ) = f () (€)=

% [(g [(un)xx]) - O-OlL_l (g [un(un)x]) -
0.01L1 (g [, (u,, — 1)])]) dé (22)

Now we use the initial condition

uo(x, t) = u(x,0) = 2(1 — tanh(0.0025x)) (23)

s (0, 6) = g (e, £) = f (o), ) —

5|17 (Gl ) = 00117 (Euo(uo)s]) =
0.01L7 (2fuo(uo — D1)[) dg (24
u(x,t) = % - %tanh(0.00ZSx) + fot(a% [L—l (S [(% _
tanh(0.00ZSx))xxD -

oori= (4t~

tanh(0.0025x) (5 — > tanh(0, 0025x)) ))-
0.01L? (g [(E — Ltanh(0. 0025x)) (— 1
2tanh(0.00251))])])ds  (25)
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up(x, t) =
%— %tanh(0.00ZSx) +

| (2 (e (S
sz—(O.;);)ZS)Z)) — 0.01L-1 [(—0.:3025) % (52_(0_;)025)2)2 +
22| (in) < (20 )
(o | - oon (242 e

Sz_(of—ozs)z)z)])df (26)

1 1 t(o 5
= 3 —3tanh(0.0025x) + (57 [(-2(0.0025)° +

(0.0025)7 0.01(0.0025) (0.0025)*
D7) - 220 [2(0.0025)7 — g2 4
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(0.0025)% 0025)5

2(0.0025)3¢ — ©2025)" ¢ ]
0.01 (X +2(0. 0025) 3 )]) @27
0.01(0.0025)®

u(x, t) = ———tanh(O 0025x) +74 +

7
((0 0(;25) + 001(0;’025) + 2(0.01(0-0025)2)) t?—

0.01(“""’25) +2+4(0.0025)2) ¢ (28)

Therefore, the approxmate solution:
u(x t) =~u(x,t) =

- — —tanh(O 0025x) +

6 K 5 7
001(0 0025) 3 4 ((0 0(;2 )

0.01(0.0025)° ((0 .0025)%

+ 2(0.01(0.0025)2)) t2-0.01 +

Z+4(0.0025)2) ¢ (29)
Table (1) shows the approximate solution using the

proposed VITM method against the exact solution for
various values of x and t.

Table (1): The Approximation Solution against the Exact Solution Whena =8 =0.01and o = 1.

X t Exact sol. App. Sol. Error
0.01 | 0.02 0.500043749999888 0.500037500312506 0.000006249687382
0.02 0.500031249999959 0.500025000312525 0.000006249687434
0.03 0.500018749999991 0.500012500312574 0.000006249687417
0.04 0.500006250000000 0.500000000312671 0.000006249687329
0.05 0.499993750000000 0.499987500312829 0.000006249687171
0.01 | 0.03 0.500068749999567 0.500062500703133 0.000006249296434
0.02 0.500056249999763 0.500050000703152 0.000006249296611
0.03 0.500043749999888 0.500037500703201 0.000006249296687
0.04 0.500031249999959 0.500025000703297 0.000006249296662
0.05 0.500018749999991 0.500012500703456 0.000006249296535
0.01 | 0.04 0.500093749998901 0.500087501250010 0.000006248748891
0.02 0.500081249999285 0.500075001250029 0.000006248749256
0.03 0.500068749999567 0.500062501250078 0.000006248749489
0.04 0.500056249999763 0.500050001250175 0.000006248749588
0.05 0.500043749999888 0.500037501250333 0.000006248749555
0.01 | 0.05 0.500118749997767 0.500112501953137 0.000006248044630
0.02 0.500106249998401 0.500100001953156 0.000006248045245
0.03 0.500093749998901 0.500087501953205 0.000006248045696
0.04 0.500081249999285 0.500075001953301 0.000006248045984
0.05 0.500068749999567 0.500062501953460 0.000006248046107
0.01 | 0.06 0.500143749996039 0.500137502812514 0.000006247183525
0.02 0.500131249996985 0.500125002812533 0.000006247184452
0.03 0.500118749997767 0.500112502812582 0.000006247185185
0.04 0.500106249998401 0.500100002812678 0.000006247185723
0.05 0.500093749998901 0.500087502812837 0.000006247186064
0.01 | 0.07 0.500168749993593 0.500162503828141 0.000006246165452
0.02 0.500156249994914 0.500150003828159 0.000006246166755
0.03 0.500143749996039 0.500137503828209 0.000006246167830
0.04 0.500131249996985 0.500125003828305 0.000006246168680
0.05 0.500118749997767 0.500112503828464 0.000006246169303
0.01 | 0.08 0.500193749990302 0.500187505000018 0.000006244990284
0.02 0.500181249992061 0.500175005000036 0.000006244992025
0.03 0.500168749993593 0.500162505000086 0.000006244993507
0.04 0.500156249994914 0.500150005000182 0.000006244994732
0.05 0.500143749996039 0.500137505000341 0.000006244995698

Case 2: when a = =0.001 and ¢ = 1. Table (2)
shows the approximate solution using the proposed
VITM method against the exact solution for various
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values of x and t. In addition, the absolute errors
resulted by using the proposed VITM and existing
VIM [25] is presented.
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Table (2): The Exact Solution and the Approximation Solution When a = g = 0.001and o = 1.

X T Exact sol. App. Sol. Error Error
VITM VIM
0.01 | 0.02 | 0.500003812500000 | 0.500003750003125 | 0.000000062496875 | 0.0025031102
0.04 | 0.500008812499999 | 0.500008750012500 | 0.000000062487499 0.0025081138
0.06 | 0.500013812499996 | 0.500013750028125 | 0.000000062471871 0.0025131170
0.08 | 0.500018812499991 | 0.500018750050000 | 0.000000062449991 | 0.0025181206
0.04 | 0.02 | 0.50000062500000 | 0.500000000003125 | 0.000000624996875 | 0.0099961959
0.04 | 0.500005062500000 | 0.500005000012500 | 0.000000062487500 | 0.0100011899
0.06 | 0.500010062499999 | 0.500010000028125 | 0.000000062471874 0.0100061907
0.08 | 0.500015062499995 | 0.500015000050000 | 0.000000062449995 0.0100111915

5. Conclusion

The generalized Burger’s-Fisher has been analyzed
using the variational iteration transform method. The
proposed method provides dependable results in the
form of analytical approximation converging very
rapidly, this method can give very good
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