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The aim of this paper is present a new numerical method for

solvingThree Dimensions Volterra Integral Equations using artificial
neural network by design multilayer feed forward Neural Network. A
multi- layers design in our proposed method consist of a hidden layer

Volterra Integral Equations, having seven hidden units and one linear output unit. Linear Transfer
Artificial Neural Network. Linear function —used as each unit and using  Levenberg-
Transfer  Function, Levenberg- Marquardtalgorithmtraining. Moreover, examples on three- dimensional

Volterra integral equations carried out to illustrate the accuracy and the
efficiency of the presented method. In addition, some comparisons
among proposed method and Shifted Chebyshev Polynomials method

Marquardt Algorithm.
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1. Introduction

In engineering and science problems,
multidimensional integral and differential equations
proved to be an important tool for modeling and
solving such problems [1-2].

There are many numerical methods to solve such
equations especially two dimensional integral
equations, [3-12]. Three - dimensional integral
equations can be solved by using some of these
methods. For example,method of Degenerate Kernel
Method used to solvethree-dimensionalnon- linear

Volterra integral equations [13], in [14-15]
differential transform method was used to solve non-
linear TDVIE, and Shifted  Chebyshev

Polynomialsmethodare used for solving TDVIE[ 16].
In this study, we describe another numerical method
to solve TDVIE by designing a feed forward neural
network. Therefore, we consider the following
TDVIE:

u(x,y,z) =

flx,y,2) +

foz foy fOxK(x, y,z,1,5,t)u(r,s, t)drdsdt (1)

where (x,y,z) e D =[0,X] x [0,Y] x [0,Z],
u(x,y,z) is the unknown function to be
found,K (x,y, z,7,s, t)and f(x,y,2)are given
functions defined, respectively on D.

2. Artificial Neural Network (ANN)

An  (ANN) formed from many artificial
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and Reduced Differential Transform Method are presented.

neurons(nodes equivalent to neurons of a human
brain) that are joint together dependent on particular
network -architecture. The goal of the neural network

is to transform the inputs into significativeoutputs .

In another words (ANN) is an interconnected system
of nodes by weighted arrows (equivalent to synapses
between neurons). The outcome of (ANN) altered by
changing of the arrow’s weights. The result of the
network for the data that fed to the input layer
displayed by the output layer. The input nodes
(represent the independent variables)that used for
predicting the dependent variable (i.e. the out
neurons).

In [17], (ANN) characterized by:

1- "Its pattern of connections between the neurons
(called its architecture)".

2- "Methods of determining the weights on the
connections  (called its training or learning,
algorithm)".

3- "Its activation—function".

2.1 Neural Network Structure:

The structure or topology of an artificial neuron
network means the way of regulation of neuronal
computational cell in the network. Particularly how
the information transmitted though the network
Figure 1 and how the nodes are connected. The
architecture can by classified in terms of three aspects
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(Number of levels or layers, Connection pattern and
Information flow).

Hidden
layer

Input
layer

Output
layer

Input #1
Input #2 Output

Input #3

Fig. (1): Neural Network Structure

2.2 Linear Transfer Function (purelin)

The output of a linear transfer function is equal to its
input:

a n

as illustrated in figure 2.

a = purelin(wp+b)

a = purelin(n)

Linear Transfer Function Single-Input purelin Neuron
Fig. (2) Linear Transfer Function

2.3Levenberg Marquardt Algorithm Training
(trainlm)

Training neural network is basically a nonlinear
squares problem, so can be solved by using a several
nonlinear least squares algorithms.One of them is
(LMA).We can consider (LMA) as a combination of
the Gauss — Newton method and steepest descent.

For (LMA), the performance index to be optimized as
F(w) = §=1[zz=1(dkp - Okp)z] (2)

Where w=[w; W, ...wx]" consists of all weights of
the network, d, is the desired value of the K™ output
and the p™ pattern, oy, is the actual value of the k™
output and the p™ pattern, N is the number of the
weights, P is the number of pattern, and K is the
number of the network output.

Equation (2) can be written as follows:

Fw)=ETE (3)

Where E = [611 €181 e €k e B1p ...ekp]T, explS
the trainingerror atoutput k when applying pattran p
and defind as ey, = dyp — 0kp

p=1,-,P.E is the cumulative error vector (for all
pattern). From equation (3) the weights are calculated
using the following equation

Werr = we — (e + DL E,
and the jacobian matrix is defined as

C)
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where Tidentity unit matrix, u the learningparameter
andJjacobian of m out- put error of the neural
network with respect to n weights, respectively. At
each iteration the u parameter automatically adjusted
in order to secure convergence, the calculation of the
jacobian matrix J and the inverse of JTJ square
matrix of order N X N at each iteration step are the
requirement of LMA.

3. Description of Method

In the current section, we will demonstrate conducing
our approach to be used the approximation solution of
the TDVIE.

u(x,y,z) =

fG,y,2) +

fozfoy foxK(x,y,z,r,s, t) u(r,s, t) drdsdt

where (x,y,z) € D = three dimension = [0, X] X
[0,Y] x [0,Z], and u(x,y,z)is unknown function to
be found.lfu,(x,y,z,p) is a trial solution with
adjustable parameters p, the discretized from

Min ¥y, y,zien f (%0 y:,21) +

JO K Oy 2, 8,t) ue(r, s, t,p) drdsdt
Where x ,y ,z is variables such that(x,y,z) € D=

three dimension=[0, X] x [0, Y] x [0, Z].

In the our proposed approach, the trial solution

u.corresponds FFNN and the
parameterspemploysbiases and weights of the neural-
architecture, the form for the trial-function u,(x, y, z)
is ut(xi'yi'zi!p) = G(x!y' Z,N(X, Y, Z, p))

where N(x,y,z,p)is a single output FFNN with
parameter p and n input unit feed with the input
vectors x,y,z.The term G is constructed, since
u(x,y,z) satisfy them. This term can be formed by
using a (ANN) whose biasesand weights are adjusted
in order to deal with the minimization problem. The
Minimized have form

E(p) =

Ve —

Y (f (e yiz) +

fozi foyi foxi K(x, yi, 2 uc(r, s, 1)) drdsdt)}2
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4. Applications to three dimensions volterra
integral equation

To demonstrate the efficiency of the proposed
method (ANNM), we consider the following
examples and to test the accuracy of solutionsusing
mean square error MSE.All programing written in the
MatLab to computed the results.

Example4.1

Consider the (TDVIE)

u(x:y' Z) = f(x'y,Z) - J‘OZ foy foxu(r. S, t) drdsdt
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where (x,y,2) € [0,1] x [0,1] x [0,1]
2 2 2

And  f(x,y,z2)=x+y+z+ x—y“xyz 2RI

has analytic function
ulx,y,z) = x+y+z
by applying suggested method Table (1) shows the
exact, neural result, error, and men square error.
Table (2) given the weight, bias, Epoch, time and
performance. of the network.

Table (1): exact, neural and Accuracy of solution example (4.1)

X] Y z Exact ug(x,y,2) | Trainlmu,(x,y,2) | Error = |u; — ug|
0.1 0.1 0.1 3.0000e-001 2.9990e-001 9.6546e-005
0.01 0.1 0.1 2.1000e-001 2.0999e-001 7.4557e-006
0.01 0.01 0.1 1.2000e-001 1.2000e-001 2.2235e-007
0.01 | 0.01 | 0.01 3.0000e-002 3.0000e-002 9.6546e-009
0.001 | 0.01 | 0.01 2.1000e-002 2.1000e-002 7.4557e-010
0.001 | 0.001 | 0.01 1.2000e-002 1.2000e-002 2.2235e-011
0.001 | 0.001 | 0.001 3.0000e-003 3.0000e-003 9.6546e-013
MSE 1.34e-009

Table (2): weight, bias, Epoch, time and performance of the network

weight and bias Epoch, time and performance
Net_IW[1,1] Net_LW[1,2] | Net_B[1] | Epoch | time | performance
0.4177 | 0.6665 | 0.8819 0.8555 0.00
0.9831 | 0.1781 | 0.6692 0.6448 0.00
0.3015 | 0.1280 | 0.1904 0.3763 0.00 9 0.00.02 1.03e-33
0.7011 | 0.9991 | 0.3689 0.1909 0.00
0.6663 | 0.1711 | 0.4607 0.4283 0.00
0.5391 | 0.0326 | 0.9816 0.4820 0.00
0.6981 | 0.5612 | 0.1564 0.1206 0.00
Example 4.2 x%y?z? | x3y’z
Consider the (TDVIE). 8 6 /. .
w(x,y,z) = whichhasanalyticsolution

f(x,y,2) — 24x2%y foz foy foxu(r, s, t) drdsdt
Where (x,y,z) € [0,1] x [0,1] x [0,1].

2,3
fxy,2) = x%y +yz* + xyz + 24x%y (L +

And

u(x,y,z) = x%y + xyz + yz*

by applying suggested method Table (3) shows the
exact, neural result, errorand men square error . Table
(4) given the weight, bias, Epoch, time and
performance of the network.

Table (3): exact, neural and Accuracy of solution example (4.2)

X\ Y Y4 Exact u, (x,y,2) | Trainlmu,(x,y,2z) | Error = |u, — u,|
0.1 0.1 0.1 3.0000e-003 2.9601e-003 3.9873e-005
0.01 0.1 0.1 1.1100e-003 1.1100e-003 3.8101e-008
0.01 | 001 | 01 1.1100e-004 1.1100e-004 3.6387e-010
0.01 | 0.01 | 0.01 3.0000e-006 3.0000e-006 3.4274e-011
0.001 | 0.01 0.01 1.1100e-006 1.1100e-006 3.4096e-014
0.001 | 0.001 | 0.01 1.1100e-007 1.1100e-007 3.3924e-016
0.001 | 0.001 | 0.001 3.0000e-009 3.0000e-009 3.3713e-017
MSE 2.27e-010

Table (4): weight, bias, Epoch, time and performance of the network

weight and bias Epoch, time and performance
Net_IW[1,1] Net_LWI[1,2] | Net_B[1] | Epoch | time performance
0.4401 | 0.9577 | 0.2548 0.0067 0.4609
0.5271 | 0.2407 | 0.2240 0.6022 0.7702
0.4547 | 0.6761 | 0.6678 0.3868 0.3225 10 0.00.01 9.67e-10
0.8754 | 0.2891 | 0.8444 0.9160 0.7847
0.5181 | 0.6718 | 0.3445 0.0012 0.4714
0.9436 | 0.6951 | 0.7805 0.4624 0.0358
0.6377 | 0.0680 | 0.6753 0.4243 0.1759
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Example 4.3:

Let the following (TDVIE)[15]

ulx,y,z) = f(x,y,2) + foz foy foxu(r, s, t) drdsdt
where (x,y,z) € [0,1] x [0,1] x [0,1].

and  f(x,y,z) = e*tY + e¥tZ L e¥t2 — ¥ — ¥ —
e’ + 1.
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hasanalyticsolution

u(x’y, Z) — ex+y+z

by applying suggested method Table (5) shows the
exact, neural result, error,and men square error. Table
(6) given the weight, bias, Epoch, time and
performance of the network.

Table (5): Exact, neural and Accuracy of solution example (4.3)

X| Y Z Exact u,(x,y,2z) | Trainlmu,(x,y,z) | Error = |u, — u,|

0.1 0.1 0.1 1.3499e+000 1.3507e+000 1.8419e-004
001 | 01 0.1 1.2337e+000 1.2338e+000 8.5500e-005
001 | 001 | 01 1.1275e+000 1.1275e+000 8.3164e-006
0.01 | 0.01 | 0.01 1.0305e+000 1.0305e+000 1.6259e-007
0.001 | 0.01 | 0.01 1.0212e+000 1.0212e+000 7.8907e-008
0.001 | 0.001 | 0.01 1.0121e+000 1.0121e+000 7.8634e-009
0.001 | 0.001 | 0.001 1.0030e+000 1.0030e+000 1.6224e-010

MSE 1.13e-007

Table (6): weight, bias, Epoch, time and performance of the network

weight and bias Epoch, time and performance

Net_IW[1,1] Net_LWTI1,2] | Net_B[1] | Epoch | Time | performance
0.9138 | 0.1704 | 0.4022 0.3508 0.2992
0.7067 | 0.2578 | 0.6207 0.6855 0.4526

0.5578 | 0.3968 | 0.1544 0.2941 0.4226 8 0.00.02 5.63e-07
0.3134 | 0.0740 | 0.3813 0.5306 0.3596
0.1662 | 0.6841 | 0.1611 0.8324 0.5583
0.6225 | 0.4024 | 0.7581 0.5975 0.7425
0.9879 | 0.9828 | 0.8711 0.3353 0.4243

To study accurate and efficient. Know comparison
amongsuggest method (ANNM) with Shifted
Chebyshev Polynomial method (SCPM) [16] and

Table (7): Absolute error of

Reduced differential Transform method (RDTM)
[14]. depended on absolute error.

SCPM), (RDTM) and (ANNM).

Exactu(x,y,z) | SCP RDT ANN

Xl Y z Method Methodu, method

0.1 0.1 0.1 1.3499e+000 3.3089e-002 | 2.0875e-004 | 1.8419e-004
001 |01 0.1 1.2337e+000 2.1664e-002 | 1.9079e-004 | 8.5500e-005
0.01 [0.01 |01 1.1275e+000 1.1933e-002 | 1.7437e-004 | 8.3164e-006
0.01 [0.01 | 0.01 | 1.0305e+000 3.6683e-003 | 1.7045e-007 | 1.6259e-007
0.001 | 0.01 | 0.01 | 1.0212e+000 2.5502e-003 | 1.6893e-007 | 7.8907e-008
0.001 | 0.001 | 0.01 | 1.0121e+000 1.4508e-003 | 1.6741e-007 | 7.8634e-009
0.001 | 0.001 | 0.001 | 1.0030e+000 3.6986e-004 | 1.6704-0010 | 1.6224e-010

Conclusion

Analytic solution of (TDVIE) are usually difficult,
many cases required numerical solutions. In this
paper, we introduced a new numerical method to
solve TDVIE. The results indicate minimal mean
square errorandwerecompared with the solution for
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