Detection of genetic relationships among some species belongs to genus Malus from mid Iraqi regions
Main Article Content
Abstract
RAPD-PCR method was used for systematic study and revealing the genetic relationships in Malus by using 7 apple cultivars from some mid Iraqi regions, DNA of fresh leaves was extracted using modified protocol of CTAB, 22 prechosen random decamer primers were applied to detect Malus genotypes. four primers gave reproducible and appeared polymorphism in the RAPD profile, a total 48 bands were produced out of which 36 bands were polymorphic, the results arise two main clusters, the first one included Malus sylvestris has unique amplified and discriminated from other Malus taxa, thus it can be a good molecular tool for taxa identification which separated at the similarity value of 0.48, and the second cluster contained two groups, one included M. domestica, and M. domestica var. ralls janet which appeared as closely related species with a stronger correlation at similarity range of 0.09, furthermore, it considered that the present study identifies reservoir of alleles that useful for breeding programs in parental crosses.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
1 Phipps, J. B.; Robertson, K. R.; Smith, P. G. and Rohrer, J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Can. J. of Bot.,68: 2209-2269.
2 Katayama, H. and Uematsu, C. (2003). Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor. Appli. Genet., 106, 303–310.
3 Elscoart, X.; Vekemans, M.; Smulders, J. M.; Wagner, I.; Johan, V.; Erik, V. and Isabel, R. (2003). Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol. Eco., 12, 845-857.
4 Morgan, D. R.; Soltis, D. E. and Robertson, K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. of Bot., 81:890–903.
5 Rhymer, J. M. and Simberloff. D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27: 83-109.
6 Hokanson, S. C.; Szewc-McFadden, A. K.; Lamboy, W. F. and McFerson, J. R. (1998). Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor. Appl. Genet. 97:671–683.
7 Allendorf, F. W.; Leary, R. F.; Spruell, P. and Wenburg, J. K. (2001). The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution, 16:613-622.
8 Herrero, R.; Asins, M.; Carbonell, A. and Navarro, L.(1996). Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theory. Appl. Genet. 92: 599- 609.
9 Barkley, N. A.; Roose, M. L.; Krueger, R. R. and Federici, C. T. (2006). Assessing genetic diversity and population structure in a Citrus germplasm. Theore. .Appl. Genet., 112:1519-1531. Doi: 10. 1007 / S00122-013-2155-0.
10 Noiton, D. and Shelbourne, C. (1992). Quantitative genetics in an apple breeding strategy. Euphytica, 60:213–219.
11 Zhou, Z. Q. and Li, Y. N. (2000). The RAPD Evidence for the Phylogenetic Relationship of the
Closely Related Species of Cultivated Apple, Genet. Res. Crop Evol. vol. 47: 353–357.
12 Hokanson, S. C.; Lamboy, W. F.; Szewc-McFadden, A. K. and McFerson, J. R. (2001). Microsatellite (SSR) Variation in a Collection of Malus (Apple) Species and Hybrids, Euphytica, 118: 281–294.
13 Forte, A. V.; Ignatov, A. N.; Ponomarenko, V. V.; Dorokhov, D. B. and Savelyev, N. I. (2002). Phylogeny of the Malus (Apple Tree) Species, Inferred from the Morphological Traits and Molecular DNA Analysis. Rus. J. of Genet., 38(10 ):1150–1160.
14 Stephan, B. R.; Wagner, I. and Kleinschmit, J. (2003). Wild apple (Malus sylvestris [L.] Mill.) and pear (Pyrus pyraster [L.] Burgsd.). Technical Guidelines EUFORGEN. www.ipgri.cgiar.org/networks/ euforgen/ euf- home. htm.
15 Coart, E.; Van-Glabeke, S.; De-Loose, M.; Larsen, A. S. and Roldn-Ruiz, I. (2006). Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple ( Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.) Mol. Eco.15 :2171–2182, doi: 10.1111/j.1365-294X.2006.02924.x.
16 Palombi, M. A.; Lombardo, B. and Caboni, E. (2007). invitro regeneration of wild pear (Pyrus pyraster Burgsd) colnes tolerant to- Fe- chorosis and somatic lonal variation analysis by RAPD markers. Plant cell report 26: 489- 496.
17 Abdul-Razaq, R. T. (2008). A Comparative systematic study of taxa of subfamily Pomoideae (Rosaceae) in Iraqi Kurdistan. Ph.D. Thesis. College of Agriculture .University of Sulaimanya, (In Arabic).
18 Chagne, D; Ross, N.; Crowhurst, M.; Pindo, A.; Thrimawithana, C.; Deng, H.; Ireland, M.; Fiers, H.; Dzierzon, A.; Cestaro, P.; Fontana, L.; Bianco, A.; Lu, R.; Storey, M.; Kna-bel, M.; Saeed, S.; Montanari, Y.; Kim, D.; Nicolini, S.; Larger, E.; Stefani, A.; Allan, J.; Bowen, I.; Harvey, J.; Johnston, M.; Malnoy, M.; Troggio, L.; Perchepied, G.; Sawyer, C.; Wiedow, K.; Won, R.; Viola, R.; Hellens, P.; Brewer, L.; Bus, V.; Schaffer, R.; Gardiner, S. and Velasco, R. (2014). The Draft Genome Sequence of European Pear (Pyrus communis L. „Bartlett‟). Plos One www.plosone.org. 9( 4): 26-44.
19 FAO (2015). production data. FAO. Retrieved.
20 Post, G. E. (1932). Flora of Syria, Palestine and Sinai. 1:639.
21 Townsend and Guest, 1966. flora of Iraq. ministry of agriculture. Baghdad. vol:2, pp:110.
22 Rechinger, K. H. (1969). Flora Iranica (Rosaceae) Ak ademische Druck-U. Verlagsanst alt Gras- Austeia, 66:161- 202.
23 Davis, P. H. (1972). Flora of Turkey and The East Aegean Island. University of Edinburgh press. .4:657.
24 Rao, C. K. (2004). Flora Vol. I, II A Gardener's encyclopedia over 20,000 plants New Delhi, 1584.
25 Linder, C. R.; Taha, I.; Seiler, G. S.; Snow, A. A. and Rieseberg, L. H. (1998). Longer introgression of crop genes into wild sunflower populations. Theor. .Appli. Genet.s, 96:339-347.
26 Smulders, M. J. M.; Van-der-Schoot, J.; Geerts, R.; Antonisse-De-Jong, A. G.; Korevaar, H.; Van-Der-Werf, A. and Vosman, B. (2000). Genetic diversity and the reintroduction of meadow species. Plant Biology, 2:447-454.
27 Ferriol, M.; Pico, M. B. and Nuez, F. (2003). Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution 50: 227-238.
28 Chandra, A.; Saxena, R.; Roy, A. K.; and Pathak, P. S. (2004). Estimation of genetic variation in Dichanthium annulatum genotypes by RAPD technique. Trop. Grassland. 38: 245- 252.
29 Radwan, S. A. (2014). Molecular disscrimintion and genetic relationships between some cultivars of Cucurbita pepo spp, using random amplified polymorphic DNA (RAPD) analysis. Afr. J. of. Biotechnology. 13(11): 1202- 1209. DOI: 10.5897/AJB2012.3007.
30 Al- Anbari , A. K.; AL-Zubadiy, M. W. and Dawood, W. M. (2015) Genetic Diversity of Some Taxa of Cucurbitaceae Family Based on “ RAPD” Markers. Advances in Life Science and Technology. 37: 7-11. www.iiste.org. ISSN 2224-7181 (Paper) ISSN 2225-062X (Online).
31 Dunemann, F.; Kahnau, R. and Schmidt, H. (1994). Genetic Relationships in Malus Evaluated by RAPD 'Fingerprinting' of Cultivars and Wild Species. Plant Breeding, 113:150-159. ISSN 0179-9541.
32 Autio, W. R.; Schupp, J. R.; Ferree, D. C.; Glavin, R. and Mulcahy, D. L. (1998). Application of RAPDs to DNA extracted from apple rootstocks. Hort. Sci.33: 333–335.
33 Wünsch, A. and Hormaza, J. I. (2002). Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125: 59-67.
34 Nybom, H.; Rogstad, S. H. and Schaal, B. A. (1990). Genetic variation detected by use of the M13 „DNA fingerprint‟ probe in Malus, Prunus, and Rubus (Rosaceae). Theory. Appl. Genet. 79: 153–156.
35 Ishikawa, S.; Kato, S.; Imakawa, S.; Mikami, T. and Shimamoto, Y. (1992). Organelle polymorphism in apple cultivars and rootstocks. Theory. Appl. Genet. 83: 963–967.
36 Doyle, J. J. and Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. FOCUS. 12:13-15.
37 Liber, Z.; Park, J. M.; Kova, I. S.; Eddie, W. M. and Schneeweiss, G. M. (2006). Phylogeny and biogeography of isophyllous species of Campanula
(Campanulaceae) in the Mediterranean area. Syst. Bot. 31(4): 862- 880.
38 Chan, K. and M. Sun. (1997). “Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus” . Theor. Appl. Genet. 95: 865- 873.
39 Shukla, S.; A. Bhargava; A. Chatterjee; A. Srivastava; and S. Singh (2006). “Genotypeic variabilibty in vegetable Amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years”. Euphytica. 151:103- 110.
40 Shiran, B.; N. Amirbakhtiar; S. Kiani; SH. Mohammadi; BE. Sayed- Tabatabaei; and H. Moradi.(2007). “Molecular characterization and genetic relationship among almond cultivars assessed by RAPD and SSR markers”. Sci. Hortic. 111:280- 290.
41 Ferriol, M.; Pico, B. and Nuez, F. (2004). Morphological and molecular diversity of a collection of Cucurbita maxima landrces. J. Am. Soc. Hortic. Sci. 129(1):60-69.
42 Gwanama, C.; Labuschangne, M. T. and Botha, A. M. (2000). Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphatica. 113: 19-24.
43 Ponomarenko, V. V. (1982) .The Origin and Distribution of Cultivated Apple Malus domestica Borkh., Byul. Vses. Inst. Rastenievod., 126: 7–12.
44 Samigullin, T. K.; Miroshnichenko, G. P. and Antonov, A. S. (1994). Comparison of Ribosomal DNA Repeats in Fruit- Bearing Plants (Family Rosaceae Juss.), Biokhimiya, 59 (9): 1349–1359.
45 Amandine, C. and Mauricio, R. (2012). Ed. New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties". PLOS Genetics 8 (5): e1002703. doi:10.1371 / journal. pgen. 1002703. PMC 3349737. PMID 22589740.
46 Sanjur, O. I.; Pipemo, D. R.; Andres, T. C. and Wessel- Beaver, L. (2002). Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Nat. Aca. Sci. USA. 99:535- 540. www.pnas.org_cgi_doi_10.1073_pnas.012577299.
47 Naghavi, M. and Jahansouz, M. (2005). Variation in the agronomic and morphological traits of Iranian chickpea accessions. J. Integr. Plant Biol. Formely Acta Botanica Sinica. 47(3):375-379.
48 Formisano, G.; Paris, H.; Frusciante, L. and Ercolano, M. R. (2010). Commercial Cucurbita pepo squash hybrids carrying disease resistance introgresses from Cucurbita moschata have high genetic similarity. Plant Genet. Res. 8:198- 203.