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Abstract 
In this paper we developed a new method for computing learning rate for Back-propagation algorithm to train a 

feed-forward neural networks. Our idea is based on the approximating the inverse Hessian matrix for the error 

function originally suggested by Andrie. Experimental  results show that the proposed method considerably 

improve the convergence rate  of the  Back-propagation algorithm for the chosen test problem. 

1. Introduction 
Neural networks are composed of simple elements 

operating in parallel. These elements are inspired by 

biological neurons systems. As in nature, the network 

function is determined largely by the connections 

between elements. We can train a neural network to 

perform a particular function by adjusting the values 

of the connections(weights), between elements, 

commonly neural networks are adjusted, or trained so 

that a particular input leads to as specific target 

output. The network is adjusted,  based on a 

comparison of the output and the target, until the 

network output matches the target. Typically many 

such input/target pairs are used 

in this supervised learning to train a network. Batch 

training of  the network proceeds by making weight 

and bias changes based on an entire set (batch) of 

input vectors[6]. The batch training of the Multi-layer 

Feed-forward Neural network (MFFN) can be 

formulated as a non-linear unconstrained 

minimization problem [8, 9] Namely. 
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n
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where E is the batch error measure defined as the sum 

of squared differences Error functions over the entire 

training set , defined by 
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Where 
2

, ,
( )

M

j p j p
o t  is the squared differences 

between the actual j-th output layer neuron for pattern 

P and the target output value. The scalar P is an index 

over input-output pairs, the general purpose of the 

training is to search an optimal set of connection 

weights in the manner that the error of the network 

output can be minimized.  

   The most popular training algorithm is the Classical 

Batch Back-Propagation (CBP) introduced by 

Rumelhart, Hinton and Williams[12]. Although the 

CBP algorithm is a simple learning algorithm for 

training Multi-layer Feed-Forward MFF networks, 

unfortunately it is not based on a sound theoretical 

basis and is very inefficient and unreliable. One 

iteration of the CBP algorithm can be written 

1k k k k
w w g


   (3) 

Where 
k

w  is the vector of current weights and 

biases, ( )
k k

g E w   and 
k

  is the learning rate, 

with CBP the learning rate is held constant 

throughout training. The performance of the 

algorithm is very sensitive to the proper setting of the 

learning rate [5]. In order to overcome to the 

drawbacks of the CBP algorithm many gradient based 

training algorithms have been proposed in the 

literature [1, 2,5,7,13].  

2. Some Modifications on CBP. 
A surprising result was given by Brazilian and 

Brownie [3], which gives formula for the learning 

rate 
k

 and leads to super linear convergence. The 

main idea of Brazilia and Brownie (BB) method is to 

use the information in the previous iteration to decide 

the step size (learning rate) in the current iteration. 

The iteration in equation (3) is viewed as 
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having certain quasi-Newton(QN) property, is 

reasonable to require either 
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Solving equation (5) or (6) for 
k

  we get the 

following formulas  
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respectively. Note that we abbreviate the method 

defined in equation(3) with learning rate defined in 

equations (7) and (8) as BB1 and BB2 methods, 

respectively. 
   An alternative approach is based on the work of 

Plagianakos et al [11]. 

Following this approach, equation (3) is reformulated 

to the following Scheme: 
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Where 
1 2

[ , , . . . , ]
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B d iag     and  ,  1, . . . ,
i

i n   are 

eigen values for the 2

( ),
k

E w  or approximations to 

the Eigen-values for 2

( ).
k

E w  

A well known difficulty to this approach is that the 

computation of the Eigen values or estimating them is 

not a simple task, hence the schema defined in 

equation (9) is not practical . 
3- Development Method 
In the following we suggest another procedure for 

computing a scalar approximation of the Hessian of 

the function E at 
n

k
w R which can be used to 

get the step-size along the negative gradient. Let us 

consider the initial point 
0

w where 
0

( )E w  and 

0 0
( )g E w   can immediately be computed. Using 

the backtracking procedure (initialized with  1
0
 )  

we can compute the step-length 
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So, the first step is computed using the backtracking 

along the negative gradient. Now, at point 

1
 ,  0 ,1, .. .

k k k k
w w g k


    , from Taylor series we 

have 
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Where z  is on the line segment connecting 
k

w and 

1k
w


. Having in view the local character of the 

searching procedure and that the distance between 

k
w and 

1k
w


 is enough small we can choose 

1k
z w


 and consider 

1k



 as a scalar 

approximation of the 2

1
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This is an anticipative view point, in which a scalar 

approximation to the Hessian at point  
1k

w


  is 

computed using only the local information from two 

successive points: 
k

w  and 
1k

w


. There for, we can 

write see [4]: 
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 Now, in order to compute the next estimation 
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   we must consider a procedure 

to step length 
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
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. For this let us consider the 

function: 
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as  the minimum point of  
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Showing that, if 
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 , then at every iteration the 

value of function 
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is reduced[4]. On the other 

hand, if happen that 
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 To avoid the  above problem (equations 15 and 16), 

we suggest the following formula to compute the 

learning rate at each epoch 
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  with the use of Backtraking strategy to achieve the 

Wolfe  conditions. 

Algorithm(FISBP). 

Step1. Initialization: Select n
Rw 

1
, 0  and 

10   . Compute  

          )(
1

wE  and )(
11

wEg  . Consider  
1 1

d g   

and set 1k  . 

Step2.Test for continuation of iterations. IF 

k
g   ,set 

           
k

ww * and 
k

EE *  ,  then stop. Else go to 

Step 3. 

Step3. Learning  rate computation. Compute 

k
 from (17) and test for 

the Wolfe line  Search  conditions  and update the 

variables  

            
1k k k k

w w g


  . Compute 
1k

E , 

1k
g , 

kkk
wws 

 1
 and  

            
kkk

ggy 
1

. 

Step4. Set k=k+1 and go to Step 2. 
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4. Experiments and Results: 
A computer simulation has been developed to study 

the performance of the following algorithms. 

1- GD: classical back-propagation algorithm. 

2- GDA: Adaptive back-propagation algorithm taken 

from Matlab-Toolbox. 

3- F1SBP: New suggested training  algorithm. 

  The simulations have been carried out using 

MATLAB(7.6) the performance of the MSBP has 

been evaluated and compared with batch versions of 

the above algorithm. The algorithms were tested 

using the initial weights, initialized by the Nguyen – 

widrow method [10] and received the same sequence 

of input patterns . The weights of network are 

updated only after the entire set of patterns to be 

learned has been presented . For each of the test 

problems, a table summarizing the performance of the 

algorithms for simulations that reached solution is 

presented . The reported parameters are min the 

minimum number of epochs for 50 simulation , mean 

the mean value of epochs for 50 simulation, Max the 

maximum number of epochs for 50 simulation, Tav 

the average of total time for 50 simulation and Succ, 

the succeeded simulations out of (50) trails within 

error function evaluations limit. If an algorithm fails 

to converge within the above limit considered that it 

fails to train the FFNN, but its epochs are not 

included in the statical analysis of the algorithm, one 

gradient and one error function evaluations are 

necessary at each epoch. 

1- Problem (XOR Problem) 
The first problem we have been encountered with is 

the XOR Boolean function problem, which is 

considered as a classical problem for the FFNN 

training . The XOR function maps two binary inputs 

to a single binary output. As it is well known this 

function is not linearly separable. The network 

architectures for this binary classification problem 

consists of one hidden layer with 3 neurons and an 

output layer of one neuron. The termination criterion 

is set to 
2

0 .0 0 2   within the limit of 1000 epochs, 

and table(1) summarizes the result of all algorithms 

i.e for 50 simulations the minimum epochs for each 

algorithm are listed in the first column (Min), the 

maximum epochs for each algorithm are listed in the 

second column, third column contains (Mean) the 

mean value of epochs and (Tav) is the average of 

time for 50 simulations and last columns contain the 

percentage of succeeds of the algorithms in 50 

simulations. 
 

Table (1): Results of simulations for the XOR function 

algorithms min max mean Tav succ 

GD 230 2000 652.78 8.83028 92% 

GDA 50 84 66.5 1.13614 100% 

F1SBP 3 26 8.9 0.5456 100% 

 

2- Function Approximation Problem. 
The second problem we have considered is the 

approximation of continuous function, 

( ) co s( ) 0 .1 (s in )f x x ran d x     

Where 1 : 0 .05 : 1 .x   This problem maps one real 

input to a single real output. The selected architecture 

of the FFNN is one neuron in input lager, ten neuron 

in hidden layer and one neuron in output neuron, with 

sigmoid function in hidden  neuron's and a linear 

function in output neuron. The error goal has been let 

to 0.001 and the maximum epochs to 1000. The 

results of the simulations presented in table (2) and 

figure(2)   
 

Table(2): Results of simulations for the Function 

Approximation Problem 

algorithms min max mean Tav succ 

BP -- -- -- -- -- 

GDA 191   795 391.94 5.60024 100% 

F1SBP 107 662 285.54 8.29016 100% 
 

3- SPECT Heart Problem. 

 This dataset contains data instances derived from 

cardiac single proton Emission Computed 

Tomography (SPECT) images from the University of 

Colorado. This is also a binary classification task, 

where patients heart images are classified as normal 

is abnormal. The class distribution has 55 instances of 

the abnormal class 20.6% and 212 instances of the 

normal class (79.4%)'From them there have been 

selected 80 instances for the training process and the 

remainder 187 for testing the neural networks 

generalization capability. The network architecture 

for this medical classification problem constitute of 1 

hidden layer with 6 neurons and an output layer of 2 

neurons. The termination criterion is set to 0 .1
rr

E   

within the limit of 1000 epochs. 
Table(3): Results of simulations for the SPECT Heart 

Problem 

algorithms min max mean Tav succ 

GD 505 1827 989.9 13.14658 100% 

GDA 70 525 190.82 2.71288 100% 

F1SBP 25 87 55.52 2.1963 100% 

 

5. Conclusions 
In this paper we proposed a new formula for 

computing learning rate in the back-propagation 

algorithm for training feed-forward multi-layer neural 

networks. Based on our numerical experiments, we 

concluded that our proposed method outperforms 

classical Back-propagation and adaptive Back-

propagation training algorithms and has a potential to 

significantly enhance the computational efficiency 

and robustness of training process.  
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في تدريب الشبكات العصبية الاصطناعية ذوات   Andreiمعدل تعميم جديد باعتماد عمى طريقة 
 التغذية الامامية

 3فردوس عمي ابراهيم،  1حسن حسين ابراهيم،  9خميل خضر عبو

 قسم الرياضيات ، كمية عموم الحاسوب والرياضيات ، جامعة الموصل ، الموصل ، العراق 1
 ية عموم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراققسم الرياضيات ، كم 2
 قسم الرياضيات ، كمية التربية ، جامعة تكريت ، تكريت ، العراق 3
 

 ممخصال
 Andreiتم في هذا البحث تطوير خوارزمية جديدة لحساب عامل التعميم لمشبكات العصبية ذوات التغذية الامامية. تعتمد الفكرة عمى تطوير طريقة   

لطرق وذلك باستخدام تقريب جديد لمصفوفة هيسي لدالة الخطأ. وقد بين النتائج العددية ان الطريقة المقترحة تتقارب الى الحل بشكل اسرع من ا
 التي ثم مقارنتها معها.

 


