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Abstract

The study aims to prove the controllability of mild solution for semilinar fractional integerodifferential equations

with nonlocal conditions in banach spaces.

Fractional calculus, compact semigroups and fixed point theorem, are concepts consulted to obtain results this

work.

Introduction

Studying fractional differential equations have been
contronersial nowadays , for type of these equations
are arised in many scopes of applied mathematics and
seientific disciplines such as chemistry, biology, blood
flow phenomena, control theory, etc, see [1,2]. There
has been noticeable development in ordinary and
partial differential equations involving Riemann-
liouville fractional derivatives, for details see [3].
Many researchers have been also extensively studied
controllability problems of linear and nonlinear
systems reflected in ordinary differential equations in
finite dimensional spaces, see [4].

The aim of the work is to study the controllability of
fractional for semilinear in tegrodifferentianl systems
with nonlocal condition in Banach spaces.

The main idea used to study the controllability result
for the problem (3.1) is to prove that the operator "P"
defined by (3.2) is completely continuous in C (o, b;
X) which guarantee the fixed point theorem of
schauder, for this purpose the work is organized
according to preliminaries from the fields of fractional
integral and derivative maps. Finally, we build up the
controllability result for the system (3.1), and this
result is a generalization of the problem in [5].

1- Preliminaries:

To study and complete this work we need concepts
and necessary basic.

At first, let X is areal Banach space with norm ||. ||, the
space of X-valued continuous functions on [0,b]
denoted by ([0,b];X) and the space of X-valued
Bochner integrable functions on [0,b] denoted by L (0,
b; X).

Definition (2.1), [6]:

"Let X=(x,d) and Y=(y,d) be ametric spaces, A
mapping T:X—Y is said to be continuous at a point
x, € X if for every e> 0 thereisa § > 0 such that d

(To Ty,) <€ forall x satisfying d (x,x,) < 8 and T
is said be continuous if it is continuous at every point
of X".

Definition (2.2), [7]:

"Let M be a subset of normed space X. Then the
intersection of all convex subset of X containing M is
the smallest convex subset of X containing M, this
called the convex hull or convex envelope of M and is
usually denoted by com, com=
N{A;|A; convexand M < A;}. The closure of the
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convex hull M, that is com is called the closed convex
hull of M".

Definition (2.3) [8]:

"For a function f given on the fractional derivative of f
is defined by
(D) =
1 <x<n"
Definition (2.4), [8]

"The functional (arbitrary) order integral of the
function

f € LY([a, b],R™) of order « eR*is defined by

« ot (@=s)*?t
IGf) = |, e
function".
Definition (2.5), [9]
"Let X and Y be normed spaces, the operator
A:D(A) € X — Y is said to be compact : if

1 an
r(n—o) dt™

i@t ="t f(s)ds,n —

f(s)ds, where T is the gamma

1. Aiscontinuous.

2. A is transforms every bounded subset M of X
into relatively compact subset of
Y ((A(M)is compact)) "

Definition (2.6), [10]:

"A subset U of C[a, b]is said to be equicontinuous if
for each €> 0, there is § > 0 such that ||x — y|| <
dandu € U, imply |lu(x) —u(y)|l <€ "

Remark (2.7), [6]:

"A map K:X - 2X|{¢} is convex (closed valued) if
K (x) is convex (closed) for all x € X. K is bounded
into bounded sets if K([0,b]) =Uyepop K(x) is
bounded in X for any bounded set [0, b]of X".
Definition (2.8), [61:

"A map K is called completely continuous if K([o, b])
is relatively compact for every bounded subset [0, b]
of X".

Theorem (2.9), (Arzela - Ascoli's theorem), [5]:
"Let F cC ([o, b]; X) satisfy:

i) For any t € [a,b], {f(t): f € F} is relatively compact
in X.

ii) F is equicontinuous on [a,b], that is, for any €> 0
and any t € [a,b], there exit § >0 such that,
If ) — f(s)Il <€, for any & €[a,b] satisfying
[t —s| <&, and all f€F. Then F is relatively
compact".
Theorem

theorem)

(2.10), [5], (Schauder's Fixed-point
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"Let C be a honempty bounded convex closed subset
in X, if F:C—C is continuous and F(C) is relatively
compact, then F has at least one fixed point".
3. Controllability results
In this section, given the system,
D*(z(1)) =R z(®) + Bu(®) + f(tz(D),
te [0,b],0 <x< 1
Z(0)=Z,eX (3.1)
Is integrodifferential semilinear fractional Where R(t)
is bounded linear operator strongly continuous
semigroup generated by infinitesimal R in Banach
space X with norm ||.||, and D* isRiemann —
Liouville fractional derivative, K:[0,b]xX - X is
given function. X is a Banach space contains z(.)
Values, also L?([0,b],1) is a Banach space, B is a
bounded linear operator from U into X and the control
functions u (.) in L2([0, b],11).
Definition (3.1):
The system (3.1) has a solutionz:[0,b] - X if
satisfied:
zt) = RM)z, + F(“)f (t—s)TR(E - s)H(s,z(s))ds +
F(“)f (t— $)* T R(t — s)Bu(s)ds.

Definition (3.2):
If there exists u € L?([0,b],u) is control as, V
Z,2Z1 € X, the solution of (3.1) z(t) satisfies z(b) =
74, then (3.1) is controllable on [0, b].
In order to demonstrate the main theorem of this
section, we give the following hypotheses.
(1) R(t) is a compact semigroup of bounded linear
operator generated by the infinitesimal operator (R),
and max o< IR = M
(2) B: 12(0,b;11) - L}(0,b; X) is bounded
operator from a Banach space U into X.
(3) W:L?(o,b;1) = X is a linear operator defined by.

linear

Wu F(K)f (b —$)* T R(b — 5)(Bu)(s)ds, and the
operator W1 is inverse of W.

“4) .

(i) f:lo,b] = X is strongly measurable.

(i) Suppsi<allf 0| < ga € L*(0,b), For  each
positive (a) and.

Limg e %fob ga(s)ds =x< oo, is real number.

(5) «MM[1+MM|BIIIW] <1

Theorem (3.3):

The system (3.1) is controllable on [0,b], if the
conditions (1-5) are holds.

Proof:

Define

The operator P:C(0,b; X) - C(0,b; X) as,

(P2)(H) =

RO, + 15 [, (t = ) T R(t = $)H(s,2(5))ds +

r(“)f t—s)*1TR(t—-s)Bu)(s)ds, for each z,€
(0,b,X) (3.2).

Then by using condition (3) for any z(.), define the
control

u) =w-1 [zl - R®)z, —
s)H(s,z(s))ds] ®)

-9 R0 -
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Next, by using u(t) to show z as a fixed point of (P),
so that this point is a solution of system (3.1).
Therefore clear that

(PDB) = RO + 175 f (b — )*1 R(b

- s)H(s Z(s))ds

F(oc) f(b — )T R(b —s)BW ™[z, — R(b)z,

o _ o—1
o= f (b — ) 1R(b
[

—s)H(z,z;)dt] ds = 2,
R(b —s)H(z,2z,)dt ] ds = z;.
Now, we prove the operator (P) is continuous and
convex, firstly continuously of P, so, let z, —
zin C(0,b; X),
Since ”H (s, zp(s) — H(s,z(s))) ” < ga(s)and
”H ((T z; ) — H(T, ZT)) ” < ga (t), then
H(s, Zn(S)) - H(s,z(s)), asn - o
H(t,z.,) - H(t,2,),asn > ©
Hence,
1Pz, — Pzl = Sup,<icp

| Rz + 5+ [t = )
Rt —$){H(s,2,(s)) — H(s,2(s))}|| ds

Suposisp - Rz,

1 —_ -
W!(t—s) 1.'R(t—S)BW 1

b
1 -
_@B’-(b_S) 1:R(b

- s){H(T, ZTn) — H(z, Z-,_-)}d‘[] ds

asn — oo, thus P is continuous.

Now, let B, = {z € C(0,b; X): ||zM)]| < a,a € [0, b]}
for each (a) positive number, so we note that the set
B, is bounded, closed and convex in C(0, b; X) and
the operator (p) is well defined on B, , therefore
sppose there exist appositive number (4) and we
claim that P(B,) & B, , thus in order to prove this
statement, we let for each natural number (a) there is
(Z,) a function such that, Pz, ¢ B, and a < ||Pz,]|,
So, a < ||Pz,(®)|l, for some t(a) € [o,b] therefore,

1
1< 2Pz,
then 1 < Lim,_,q
and we get
LiMgco 2 1PZgll < Limgcr a™* {IIR®2, ]| +
r(“)f It = $)* IR = )| H(s, 2(s))|ds +
F(K)f ¢t = )*HHIRE = NIBNIW I [II21II +
IIR(t)ZoII +
75 o b = )= IR = IIH(E, 20 de] ds}

1
1Pzl
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Limge, a” [Pzl

< Li Mz, || —22” [ autsra
< Limg_e 2ol Ty ) 9a()ds
(o}

o<

_— -1
+ ey B [uzln FIROZ |
NELLSEPI
T(ec +1) Ja\P4F| S

=oc MM + MM ||B||||W || MM

o MM[1+ MM ||Bl|IW=1]|] < 1 (by condition 5)
But by condition (4) (ii), we have
Limg_,. a” Y|Pz, =1, so we obtain Pz, ¢ B, is
not true, there PB, = B, for some positive A.
Now we define and prove the set V(t) = {Pz(t):z €
B,} is precompact in X. Firstly V(o) is precompact in
X.So, let0<t<band 0<t<bh,€eis a given real
number.
Define

t—€
1 —
@f (t—s)*1R(t

- s)H(; z(s))ds

(Pez)(D) = R(D)z, +

F(o()f (t— s)* 1 R(t - s)Bw[z,

- R(t)ZO —mf(b - S)O(_lfR(b

— s)H(z, z;)dt]ds
For the compactness of R(t) and u(s) is bounded, we
obtain that V;(t) = {(P-z) (t) : z € B,} is precompact
setin X.
Moreover, for z € B, and by defined control u(t), we
have

I(P2)(®) — (pz)e DI
= R(t)zo

I,(oc)f(t—s)“ LRt
- s)H(s Z(s))dS
j (t— $)*"1 R(t — $)Bu(s)ds

l"(°<)
— R(t)zo

F(oc)f (t— )1 R(t
- s)H(s,Z(s))ds
t—-€e

1 —
- @of (t - S) 1 :R(t
— s)Bu(s)ds]||
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f(t =) LRt — $)H(s,z(s))ds

<
+ = |- 1w
r(“)t f (t— )1 R(
— s)Bu(s)ds
< e +1) f||H(st(s) )llds
T L Y
M|zl + =———= H(,2)||dg ||H (7, z,)||[zd | d
+ Mz 'L+F(t°<+1)fo" COITATICARTIZIPS
S Tt J_ 94(8)ds
o t
e — -1 Mb* b
T P il + ol + s [ aatodetas

Thus, there are precompact sets close to the set V(t).
Hence, we obtath that V/(t) is also precompact in X.
Now to prove PB, = {Pz € B,} is an equicontinuous
family functions. To do this, let t € B, and t,t*€ [o, b]
such that o < t < t*, so we have,

II(PZ)(t) =PI < IRM® — Rzl +

f It = s)"R(E —s) — (" — ) 'R —

I‘(o<)
s)||||H(s,z(s))||ds+ F(x) f II(t* — ) IR —
DI H(s, z(s))||ds + [‘(o<) f [t =s)*TR(t—s) —

@t =) 'RE = IBIIwI [I|Z1II + 1RGNz, Il +

F(:c)o fob JI(b = $)**R(Mb = DI H (T, z)l dr] ds +

t* * — *
T i e - iR -

SINIBIIWwHI Tllz, RGN zo +F(o<) f (b —
)"< 117€(b = H(, z)lldrlds < IR — Rz |l +
(x) fll(t—S)“ Rt —s)— (" =) RE" —
s)gk(s)dsll +
reh Nt -
S TIR(t—s) -
((t =)L R~ 9)|[IIBIlIw I [II21II + IRMB) NIzl +
S = )% R(b - )l gk(r)de] ds +

F(K) ft II(t*—S)“ R = IBIIw [II21|I +

IRz, Il + r(o<) f l(b = s)*"*R(b - S)Ilgk(T)dT] ds
Therefore, we note that g4 (t) € L*[0, b] and we see,
ast — t*, holds

[[(Pz)(t)(Pz)(t")|| tends to zero and that means the
right hand also goes to zero,and R (t) is continuous
because it is compact.

Hence (PB,) maps B, in to afamily of equicoutiuous
functions and also bounded.

Then the operator (PB,) is precompact in C (0, b; X)
by Arzela — Ascoli theorem. So"P" is completely
continuous in C (0, b; X) by Arzela — Ascoli theorem.

S)*IR(tr — s)Ing(s)dsm

Sl -

F(cx)
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Therefore by fixed point theorem of Schauder, "P' has
a fixed point in (B,), and this point is” a solution of
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