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ABSTRACT

Distributed databases (DDBs) provide smart processing of large

databases, the problems of fragmentation and allocation are vital design
problems in addition to the centralized design. The majority of
performance degradation in DDBs is due to the communication cost by
query remote access and retrieval of data. This can be optimized through
an efficient data allocation approach that will provide flexible retrieval of
a query by low cost accessible sites. In this paper, a novel high
performance data allocation approach is designed using Chicken Swarm
Optimization (CSO) algorithm. Data allocation problem (DAP) is a NP-
Hard problem modelled as optimization problem. The proposed data
allocation approach initially characterizes the DAP into optimal problem
of choosing the appropriate and minimal communication cost provoking
sites for the data fragments. Then the CSO algorithm optimally chooses
the sites for each of the data fragments without creating much overhead
and data route diversions. This enhances the overall distributed database
design and subsequently ensures quality replication. The experimental
results illustrate that the proposed CSO based intelligent data fragment
allocation approach has better performance than most existing
approaches and thus signifies the impact of efficient data allocation in

DDBs.

1. Introduction

The increase in the volume of data in all
developmental fields has paved the way for today’s
big data era. In this era, the storage of larger
databases in a single system or machine is a tedious
process. The introduction of the distributed databases
has given wider flexibility in managing these larger
data by storing them in a distributed manner at
different machines even located at different
geographical locations [1]. These data are stored
distributive in master-slave setup and based on load
balancing the data are spread across distributed
machines connected through a centralized database
design. This data can be accessed by the clients
through thread managers at the time of query
processing [2]. Query processing initiates the data
storage machines through the query requests made by
the clients whose requirement for specified data must
be considered for placing them in geographically near
locations for easy access [3]. This can speed up the
processing and also reduce the overall execution
costs. However, this process is not a simple one as the
number users are more than expected and the size of
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data is also variable [4]. In order to match both the
user demands and storage complexities, efficient
allocation of these data fragments must be carried
out. This lead to the research on developing efficient
and capable data fragments allocation models for the
DDBs.

Data fragment allocation or simply, data allocation is
the process of selecting the most suitable location for
placing a data considering the constraints such as
access time, query processing, storage availability
and security constraints [5], [6]. Hence the DAP is
considered as an optimization problem based on
constraints. In DDBs, disk drive speed, parallelism of
the queries, network traffic, load balancing of servers
are mainly considered for designing while some other
parameters also considered rarely. Similar to file
allocation problem (FAP), DAP is also basically
identical to QAP [7] with the only difference is the
logical and semantic relations of the fragments in the
DAP [8]. Many allocation models have tried their
hands in providing efficient solution to DAP, but with
the ever increasing big data era, the DAP also
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mutated and is vital in degrading the DDB
performance. Intelligent optimization algorithms can
be an effective solution for the current state of DAP
models [9].

In this paper, an intelligent data allocation approach
is developed based on the CSO algorithm [10]. In this
approach, the DAP is modelled into optimization
problem as like QAP and then specified with two
kinds of dependencies between transactions and
fragments. Based on these dependencies, the DAP is
resolved. The CSO algorithm resolves the DAP
problem through effective selection of site for
allocating the data fragments. The simulations are
performed in Hadoop environment to validate the
performance of CSO based data allocation. The
remainder of this article is organized as follows:
Section 2 presents the description of related research
works. Section 3 explains the proposed data
allocation approach whose evaluations are presented
in section 4. Section 5 makes a conclusion about the
data allocation approach presented in this article.

2. Related works

Researches in distributed database have been mainly
centered on data fragmentation, allocation and
replication. The data provision techniques are widely
studied by the research community as a means to
improve the availability to each cloud users through
best site selection for allocating the data. In any
distributed database system, the major role in
ensuring availability with QoS depends on efficient
data fragment allocation strategy. This section
provides a discussion on some of the recent
researches on data allocation strategies. Data
fragment allocation algorithm shave been developed
based on time constraints. Mukherjee 2011, [11]
proposed refined dynamic fragment allocation
process which integrates the time limitations of
archive entrances. The capacity onset and the size of
data transferred in successive time breaks also
engaged to vigorously rearrange fragments at
runtime. This model provides low frequency to the
unwanted fragment migrations and data transfer over
the network during query executions with maximum
throughput.

Li & Wong 2013, [12] proposed the use of time series
for the DAP problem in DDBs. Primarily, the DAP is
exhibited in accessible DDBs and accomplished
short-term load predicting (STLP) using time series
to dynamically reallocate data fragments. Load
balancing and resource saving is achieved using time
series based on effective future workloads estimation
and minimized fragments migrations. However, this
model has shortcomings for the processing in data of
large size. Singh 2016, [13] also presented an
empirical evaluation of threshold and time constraint
system for non-replicated dynamic data provision in
DDBs. This approach has better performance for data
allocation. Gu et al 2016, [14] presented data
allocation approach with least cost under guaranteed
likelihood. Abdalla 2012, [15] presented a novel data

44

TJPS

re-allocation approach for replicated and non-
replicated constrained DDBSs. This approach
estimates the cost of reallocation and then utilizes the
highest query update cost site for migration decision
with minimal cost for communication.

Sun et al 2017, [16] suggested a dynamic non-
redundant data allocation approach for distributed
database systems, in which fragment update
parameters and dynamic cost parameters are specified
in order to discover the optimal solution for
reallocating redundant data. This non-redundant
approach takes into account the subsystem's time to
allocate jobs in order to tackle the challenge of
determining the source of unreliability in reliability
task assignment. Solve the estimated optimal solution
of the DAP issue using a cost function that defines
the unreliability of task execution and a cost function
of unreliability induced by processor latency. This
model, on the other hand, has a higher data transfer
overhead, which affects its efficiency. Lwin & Naing
2018, [17] also proposed a non-redundant dynamic
fragment allocation approach with horizontal
partition in DDBs. This approach reallocates
fragments based on the access patterns made to each
fragments with amount of data volume up to time
constraint and threshold value. This method lowers
the expense of updating the site as well as the cost of
storing information, all while increasing the site's
response time. This strategy can also handle the
problem of several sites qualifying for fragment
reallocation in threshold, optimum approaches.

Chen et al 2018, [18] suggested a data allocation
scheme with both static and dynamic nature of data
center considered for site selection. First the DAP is
modelled as optimization problem and minimized the
communication cost model is presented. Then the
DAP is transformed into a chunk distribution tree
(CDT) construction problem and reduced to graph
partitioning problem. This approach resolved the
DAP with low overhead but the limitation of this
model is that it is developed only for single machine
model.

Many researches have focussed on developing
algorithms that perform both fragmentation and
allocation together like Al-Sayyed et al 2014, [19]
who suggested a new approach that performs
fragmentation and allocation together depending
upon the high performance clustering and transaction
execution cost functions. In this approach, the data
relations are split into fragments and determine which
network sites are best for each of the fragments.
Though cost is considered negligible for enhancing
the allocation, this approach does not support larger
network models.

Optimization algorithms especially metaheuristic
algorithms have been recently employed significantly
to resolve data allocation problem which is a NP-hard
problem. Rahmani et al 2009, [20] proposed the use
of genetic algorithm (GA) for data allocation in
DDBs. Zhao et al 2011, [21] also utilized genetic
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algorithm for data allocation in DDBs. Though
efficient, this approach has imitations as there are
many improved metaheuristic algorithms better than
genetic algorithm. Mamaghani et al 2010, [22]
modelled the DAP into NP-complete optimization
problem and utilized an object migration learning
automaton based approach for data fragments
allocation. The execution time is minimized while the
stability of this DAP algorithm is also significant.
Mamaghani et al 2010, [23] employed two techniques
of genetic algorithm and learning automata (GA-LA)
synchronically for examining the states space of
problem. This approach is efficient in solving DAP;
the quality of generated solutions has been
accelerated. Tosun et al 2013, [24] have proposed a
collection of SA, GA and Fast ACO to solve DAP in
DDBs. The practice of these procedures escalates the
performance in terms of the implementation times
and the superiority of the fragment allocation even for
very large quantity of fragments and locations. The
ideal used for determining the locations where each
fragment will be allotted assigns only one fragment to
each location and decides the DAP problem.
Nevertheless, there are restrictions in allocating
multiple fragments to multiple sites in this approach
due to the use of higher memory for operations.

Singh et al 2014, [25] presented a new biogeography-
based optimization (BBO) algorithm to improve
DDBs allocation procedure. This BBO based model
considerably reduced the data transfer cost through
the implementation of a set of queries. BBO has been
preferred for fast running time and quality solution,
as per the authors, as a capable algorithm for
fragment allocation during DDB design. However, in
some cases the average cost of allocation for BBO is
more than Genetic algorithm. Mahi et al, [26]
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presented particle swarm optimization (PSO)
algorithm based data allocation scheme to solve the
NP-hard problem of DAP. Initially the DAP problem
is modelled into NP-hard optimization problem based
on QAP and PSO is employed to resolve the issue.
PSO-DAP minimizes the query execute time and
transaction cost. Even as the problem's
dimensionality develops, the performance of the other
methods suffers as the solution space expands
exponentially. while PSO-DAP provide better
performance. However, the slow convergence of PSO
in global optima solution is a major concern as the
high dimensional data creates the PSO to iterate in
local optimum. Apart from these models in literature,
there are many optimization algorithms that perform
better than GA, PSO, BBO such as firefly
optimization, chicken swarm optimization, etc. From
these inferences, this research article focuses on
solving DAP problem using CSO.

3. Data allocation for distributed databases
The proposed data allocation scheme is developed
using a hierarchical swarm based optimization
algorithm of Chicken Swarm Optimization. It
allocates the distributed data fragments by modelling
the DAP problem into the optimization problem.

3.1. Problem Definition

The DAP problem is defined as the problem of
finding the best processor to place the data fragments
with low transaction cost and delay. It is modelled
based on direct and indirect transaction-fragment
dependencies. The dependency between the
processors and fragments are referred as the
transaction-fragment ~ and  processor-transaction
dependencies.
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Fig. 1: Dependencies of transactions on fragments and processors on transactions

Figure 1 shows the dependencies of transactions on
fragments and processors on transactions on
distributed database systems [26]. The cost function
is derived as the sum of transaction-fragment
dependencies' direct and indirect costs [28]. If there is
data transmission from the processor containing frag
for each execution of t, the dependency between t and
frag is called direct. When data must be transferred
from a processor other than the transaction's
originating processor, the reliance is deemed indirect.
The entire cost of distributing data the total cost is the
result of adding two costs together. The first and
second costs are the same.

Cost (@) = Cost 1(®) + Cost 2(D)....(1)

Here & denotes the m element vector wherever ®j
specifies the processor to which fragj is allocated.
Cost1 is denoted by the volume of processor-
fragment dependencies which can be expressed by
the product of two matrices 1) Matrix that stores
processor fragment dependencies (stfr) and 2) Matrix
that stores the unit communication cost among the
processors (uc). The cost of loading a fragment in
processor pi is denoted by a partial cost matrix
pcostln X m. The unit partial cost matrix is
expressed as

pcostl;; = Yi_;ucyy X stfry;....(2)

Based on these parameters, the Cost1 can be
computed by evaluating the unit pcost1;; for each i
and j.

Cost 1(®) = Y7L, pcostl;;....(3)

Similarly, for the computation of Cost 2, the inter-
fragment dependency matrix (ifdm) is utilized. The
ifdm  matrix  representing the inter-fragment
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dependency is the multiplication of the matrix gfr
with the matrix g. It is given by

ifdm = qfixmxn X Qixmxn (4

Where matrix qgfr represents the execution
frequencies of the transactions and g denotes the
indirect transaction fragment dependency. Based on
this matrix, Cost 2 is derived.

Cost 2(®) = Y714 Xjp= ifdm;; j, X UCp 1), ....(5)
Hence the DAP can be modelled as optimization
problem by combining these cost values.

Cost (@) = Y7L  pcostlj + X _q X5y ifdmjyjp X
UCo, ), ...(6)

3.2. Chicken Swarm Optimization algorithm for
DAP solution

CSO algorithm has been developed based on the
behaviour of the chicken flocks by Meng et al, [10].
The hierarchy will be in the order of head rooster,
other roosters, and hens with their chicks [28].
According to the literature study, it has been found
that PSO has already been utilized for solving DAP
[26] since PSO has a smaller amount of control
parameters, features of speed convergence and lower
consuming time, robustness against to solution space
of the optimization problems. However, there are
many optimization algorithms especially swarm
optimization models that are way better than PSO.
CSO has been found to be more effective for the DAP
solution due to the hierarchical order of the problem
formation. In the initialization phase, considered in a
virtual search space, there is an X-sized chicken
swarm, with each rooster functioning as the agent of
its cluster. The agent is in charge of tracking the
chicken's location and movement. Assume that the
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numbers RX, HX, CX, and MX, respectively, reflect
the number of roosters, hens, chicks, and mother
hens.

The best fitness chickens will compete for the head
while those with the worst fitness will be at the
bottom of the food table. All X virtual chickens,
depicted by their positions x{; (i € [1,..,X],j €
[1,..,D]) at time step t, search for food in a D-
dimensional space. The location and movement of the
rooster can be updated based on [10].

xt = xt; * (1 + Randn(0,62)) ..... (7)
2 11 Lfﬁ. S fk’
" = lexp (—(f"_fi)), otherwise, * € [1,X], ke =
[fil+e
i .(8)

The Gaussian distribution Randn(0,c?) has a mean
of 0 and a standard deviationg2. The smallest
constant in the computer is e, which is utilized to
avoid zero-division-error. A rooster's index, k, is
chosen at random from the group of roosters, and f is
the fitness value of the corresponding Xx.

The dominant hens’ location and movement can be
updated as

x{Tt=xf; +S1+Rand * (xf;; — xf;) + S2 =
Rand * (x},; — x{;)...(9)

S1 = exp(fi — fr1) /(abs(fi) + €))
52 = exp(frz — fi)
Rand is a uniform random number ranging from 0 to
1. r1 [1... X] is the index of the rooster who is the i-th
hen's group-mate, and r2 [1,...,X] is the index of the
chicken (rooster or hen) who is randomly selected
from the swarm. rl1#r2.

The location and movement of the chicks around the
mother hens can be updated as

Xt =uxp;+ FLx (g — xi))
The position of i-th chick's mother (m [1, X]) is
represented by. is a parameter, which indicates that
the chick would track its mother to forage for food.
Considering the individual differences, the FL for
each chick would be randomly selected between [0,
2]. The optimization model is evaluated using the
convergence metric and the result demonstrates that
CSO-based clustering has greater convergence.
Initially, each of the processors or processors is
determined where the fragments are needed to be
positioned. For minimizing the total cost of
transaction, fragments are positioned at the best
processors. The process of CSO into DAP problem is
given in the following.

Step 1: Initialize N processors, data fragments and
memory resources

Step 2: Set initial iterations and start the CSO

Step 3: Evaluate the fitness for each agent using
fij = Cost (®);;

Step 4: Rank processors based fitness in hierarchical
order

Step 5: Cluster the sorted processor set into groups
(server, sub-server or client)

(10)
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Step 6: Update the position and status of each
processor

Step 7: Allocate data fragments based on sorted
processor list

Input
data

Assign chicks to
fraoments

v

Initialize resources &
Combnute fitness

v

Sort the best fitness
chicks & form hierarchy

v

Determine relation
between the processors

v

Update list of
fragments &

v

Perform allocation

Fig. 2: CSO based DAP approach

The process of the proposed CSO for DAP solution is
given in Figure 2. To resolve DAP, the fragment
placement must be optimally determined. In the
proposed CSO based DAP model, the processors are
initialized as chickens and the parameters are defined.
The capacity of each processor is analysed prior to
applying CSO to ensure there is no mistakes in the
fithess value calculation. The fitness for each
processor is the cost function which is computed
based on Eq.12 and mapped into CSO objective and
update functions. Based on these fitness values, the N
processors are sorted in the most dominating order.
Each processor has to take either the roles of server,
sub-server or clients which means the worst fitness
processors are designated as clients. Based on this
order, the clusters are formed with only one server,
more than one sub-server and many clients. This
clustering process act as determinant in the locations
for placing the data fragments. At each iteration, the
best location is determined by the food location
expressions in CSO. Based on this, the location for
placing these fragment allocations are finalized and
the order is updated. This solution acts as the DAP
resolution until the next iteration. At the maximum
iterations, the best location for each fragment is
finalized with minimum transaction cost.

4. Performance evaluation

4.1. Experimental Environment

The experiments are performed on the Hadoop cluster
environment consisting of 16 dedicated machines (1
master and 15 slaves). This structure is further
assigned into 3 sub-servers and 12 clients among the
slave nodes. The master node (mother server) acts as
both the namenode as well as datanode. Different
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experiments were conducted with 4 to 24 fragments
over fixed number of sites as 4 and 8. The
experiments were conducted on Intel Core i5
processor with 4GB RAM and 64bit Windows 10
operating system where java 1.8 was installed on
Hadoop framework.

The communication topology, fragments size,
number of queries, the cost of communication
between the sites, execution time and frequency, data
retrieval frequency, number of update frequency of
fragments in different sites and the initial processing
speed are arbitrarily created for simplicity from the
uniform distributions of the datasets in the
experiments. The initial number of iterations starts
from 1 and the maximum iterations is set as 500. The
population size of the CSO is set as 20 with its
learning rate set at 0.25. The control parameter value
is set as 2 to regulate the search process. The dataset
utilized are extracted from three major sources,
Twitter, Facebook and YouTube containing various
types of files namely text, audio and video files with
varying sizes from 500KB to 500MB. A total
workload of 275 queries that includes a set of 150
simple elements selection of nine attributes in the
utilized dataset of Facebook, Twitter and YouTube is
established.

4.2. Performance Metrics

Average Cost: It includes the processing cost,
communication cost and system operating costs. It is
incurred by a model to ensure the sufficient
utilization of a system without over-exploitation or
resource wastage.

Execution time: It includes the time taken for
processing the fragments and selection of best
location for allocating those fragments.

4.3. Comparison results and discussion

The proposed CSO-based data allocation method's
performance is compared with the existing models
namely GA [20], GA-LA [23], BBO [25] and PSO
[26]. The comparisons of these models are obtained
for varying number of fragments and varying number
of sites. Table 1 shows the execution time and
average costs of the implemented models for 4 sites
with number of fragments ranging from 8, 16 and 24
fragments.

Table 1: Performance comparison of Data allocation
models for 4 sites

Methods | Average cost ($) Execution time (seconds)
8 16 24 8 16 24

GA 5.98 | 9.23 | 135 9.42 15.67 23.45

GA-LA 6.11 | 114 | 1497 | 9.67 15.18 22.33

BBO 5.25 | 8.96 | 12.67 | 7.86 12.11 20.47

PSO 472 | 7.67 | 1148 | 7.11 115 19.16

CSO 391 | 6.12 | 9.89 6.85 9.97 17.38

The comparative results of average cost and
execution time are plotted in Figures 3 and 4,
respectively for the scenario containing 4 sites.
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=

8 16

Number of fragments

Fig. 3: Average cost for 4 sites
Figure 3 shows the average cost comparison of the
proposed CSO against the existing models for 4 sites.
The plot of system cost is against the number of
fragments and it shows that the proposed CSO based
method has reduced the average cost without
increasing any liabilities or complexities. The
utilization of hierarchical optimization of the CSO
has limited the cost under justifiable levels. Even
when the number of fragments increases, the
gradually linearly increased average cost is
comparatively less in CSO. For a maximum of 24
fragments, CSO has average cost of 9.89% which is
13.85%, 21.94%, 33.93% and 26.74% lesser cost than
incurred by the PSO, BBO, GA-LA and GA based
allocation models, respectively.

24

HGA EGA-IA BBO mPSO mCSO

25

N
o

-
v

.
S}

Execution time (s)

(5]

8 16

Number of fragments

Fig. 4: Execution time for 4 sites
Figure 4 shows the execution time comparison of the
proposed CSO against the existing PSO, BBO, GA-
LA and GA models for 4 sites. The execution time
for completing this data allocation process is
evaluated from the beginning of data allocation (i.e.
the end of fragmentation) to the end of allocation of
all fragments. The plot shows that the proposed CSO
based method has reduced the execution time for
different number of fragments and provided faster
convergence due to the minimum iterations of CSO.
For a maximum of 24 fragments, CSO has average
cost of 17.38 seconds which is 9.3%, 15.1%, 22.17%
and 25.88% lesser execution time than incurred by
the PSO, BBO, GA-LA and GA based allocation
models, respectively.

Table 2 shows the execution time and average costs
of the implemented models for 8 sites with number of
fragments ranging from 8, 16 and 24 fragments.

24
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Table 2: Performance comparison of Data allocation

models for 8 sites

Methods | Average cost ($) Execution time (seconds)

8 16 24 8 16 24
GA 8.97 13.845 | 21.25 14.13 23.505 | 31.175
GA-LA 9.165 | 17.1 21.455 | 14.505 | 22.77 31.495
BBO 7.875 | 13.44 17.005 | 11.79 18.165 | 29.705
PSO 7.08 11.505 | 15.22 10.665 | 17.25 21.74
CsSO 5.865 | 9.18 13.835 | 10.275 | 14.955 | 24.07

EGA EGA-LA BBO mPSO mCsSO

N
w

N
=]

[
©w

-
o

Average cost ($)

v

8 16

Number of fragments
Fig. 5: Average cost for 8 sites
Figure 5 shows the average cost comparison of the
proposed CSO against the existing models for 8 sites.
Even when the number of fragments increases, the
gradually linearly increased average cost is
comparatively less in CSO. For a maximum of 24
fragments, CSO has average cost of 14.835$% which is
9.09%, 18.64%, 35.52% and 34.89% lesser cost than
incurred by the PSO, BBO, GA-LA and GA based
allocation models, respectively.
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Fig. 6: Execution time for 8 sites
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