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1 Introduction

The finite element methods (FEMs) are broad family
of numerical and approximate methods which used
for solving ordinary differential equations (ODES)
and partial differential equations (PDESs) and also it is
used for solving integro-differential equations (IDEs).
The FEMs have many excellent numerical features
that make them popular and widely used in scientific
computing. The main advantage of the FEMs is its
ability for solving a wide variety of problems on
different computational domains with different
shapes. For example, finite difference methods
(FDMs) can solve problems on rectangular and
triangular meshes while FEMs can handle geometries
of any shapes. The beginning of the FEMs is dated
back to the 1940s in the works on using variational
methods for solving engineering problems in
particular in Courant’s work [1]. Engineers utilised
the FEMs for solving and approximating a wide range
of engineering application problems in 1950s and
1960s. The rigorous mathematical foundation of the
FEMs started in the late 1970s. From the 1980s and
onwards a huge number of research papers,
monographs and books appeared in the literature
about the FEMs and their applications [2].

Elliptic PDEs have been studied extensively during
the last three decades from different numerical points
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In this paper, a priori error analysis has been examined for the

continuous Galerkin finite element method which is used for solving a
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standard a priori error analysis techniques and tools. Also, a posteriori
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residual-based a posteriori error estimates energy technique in H norm.

of view and a plethora of references about FEM
solutions of elliptic problems have been appeared in
the literature, just to name a few [3 — 16]. In [17] the
authors solved Poisson equation using FEM and
derived a posteriori error bounds for the numerical
method and then they designed an adaptive finite
element method (AFEM) utilising these a posteriori
error bounds. The a priori error estimates for a
coupled semilinear PDE-ODE system (where an
elliptic PDE coupled with a semilinear ODE) are
obtained in H}(0,T;L,(Q) norm in [18]. Ern and
Meunier [19] in (2007) derived a posterirori error
estimates for EulerGalerkin FEM used for solving
coupled elliptic-parabolic problems. In [20] Kim et al
investigated the numerical solution of elliptic
problems using staggered discontinuous Galerkin
(SDG) method on rectangular meshes. They obtained
optimal convergence results in L, and H; norms. In
(2003) Georgoulis [21] studied and investigated the
hp-version interior penalty (hp-DGFEM) for linear
elliptic and parabolic equations. Virtanen [22]
considered and derived adaptive DGFEM for linear
fourth order elliptic and parabolic equations.
Guignard in [23] examined the error analysis for low
regularity elliptic problems with random input data.
Sabawi [24] examined and derived a posteriori and a
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priori error estimates for elliptic and parabolic
interface problems using discontinuous Galerkin
DGFEM. Also, Cangiani and coworkers studied and
investigated the adaptivity and convergence of the
DGFEM for the elliptic and parabolic interface
problems in [25] and [26], respectively.

In [27] the authors considered and presented a class
of post-processing operator in the context of studying
the a posteriori error analysis for post-processed
solutions of elliptic problems. Yang [28] in (2020)
examined and studied the error analysis for elliptic
problems with low regularity. Ye and Zhang in [29]
analysed and studied the error estimates for
continuous and discontinuous weak Galerkin (WG)
FEMs for elliptic problems with low regularity
solutions in energy and L, norms. Casas and
coworkers [30] examined the numerical solution of
semilinear elliptic equations. They proved the
existence and uniqueness of a sequence of bounded
solutions in L, (Q). The a posteriori error analysis for
elliptic obstacle problem is investigated in [31].

In this paper, we considered deriving the a posteriori
and a priori error estimates of the FEM solution of
generic linear elliptic equations and also for generic
linear systems of elliptic equations using conforming
Galerkin  finite element method. The main
contribution of this paper is deriving optimal order
residual based a posteriori error estimates in H3 norm
for generic scalar linear elliptic equation and also for
a generic linear system of elliptic equations using
energy techniques. Additionally, optimal order a
priori error bounds in HE norm for generic scalar
linear elliptic problem and for a generic linear system
of elliptic equtions are obtained using energy
arguments and standard interpolation error estimates.

This paper is organised as follows. In section 2 we
give the necessary and relevant definitions and
preliminaries of the problem. The a posteriori error
bounds for a general scalar linear elliptic equation
and for a general linear system of elliptic equations
are derived in section 3. Section 4 is devoted for the a
priori error analysis for the general scalar linear
elliptic equation and for a general linear system of
elliptic equations. The conclusions are given in
section 5.

2 Problem Setting and Notation

Consider the following generic scalar elliptic
boundary value problem as a mathematical model

Au + ku=fonQ, (1)

u =0onaqQ,

where A:V — V is a second order self-adjoint linear
elliptic operator, ¥ > 0 is a parameter and Q is a
bounded domain in R™n = 1 with sufficiently
smooth boundary dQ. The solution function u €
H?(Q) n H}(Q)and the source function f € L,(Q).
For simplicity of notations, we use V = H3(Q) unless
otherwise stated. Testing (1) with a test function
v € V, and then integrating the resulting equation
over the domain , yields

a(u,v) =2Ww), VvvevV. (2)
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a(u,v) = fﬂ(Au +kwvdx, VveV, (3)
where a is the bilinear form associated with the linear
elliptic operator A defined by

(Aw,v) = a(u,v),Vv €V, (4)

and is #(v) a linear functional defined by

() = (f,v) = fﬂfvdx,Vv e V. (5

Also, the bilinear form a(.,.) satisfies the continuity
(boundedness) and  coercivity  (V-ellipticity)
conditions as follows

a(u,w) = Ccont”u”V ”W”V! Vu,w € V, (6)
aw) = Coerllully, vYu €V, (7)

where C,yn: and C,., are positive constants. Now, we
seek to find a finite element approximate solution of
u which satisfies

a(up,v) = (f,v),Yv € V, (8)

picking v = ¢ € V,, < V in the weak form (8),
then the problem becomes: find u;, € V), such that
a(up, @) = (f,9), Ve € Vi (9)

The right-hand side function f can be approximated
using its L, projection f;, which is defined by

@) = (), Vo € V4, (10)

where f, = Py,f is the L, projection of f and
Py: L, = V, is the L, projection operator. Also,
define the discrete elliptic operator 4;, : V;, = V, as
(Apv, @) = a(v,9), Vo € Vp, (11)

using (10) in the variational form (9), we obtain

a(up, @) = (fn, ). Vo € V, (12)

which can be written as

(Apup + kup — fr,0) = 0,V € Vp, (13)
which can be expressed in the pointwise form as
Apup + kup, — f, = 0, (14)

since Apu, + ku, — f, € V, and its projection
with respect to every element in 1}, is zero. We can
conclude from (14), that the approximate finite
element solution w, of the original elliptic PDE
problem in (1) is the true solution of the elliptic PDE
with discrete elliptic operator A, and the right-hand
side function f,. The pointwise form (14) is the
discrete version of the original elliptic PDE in (1).

3 A Priori Error Analysis of Linear Elliptic
Problems

The a priori error analysis is very important topic in
the study of error analysis and convergence analysis
of differential equations using FEMs and other
methods. In a priori error analysis we are interested in
finding an error estimator of the form

llelly = [lu —uplly < (u, f,V). (15)

Notice that in general, the bound in the a priori error
analysis depends upon the data of the problem, the
forcing term f, the exact solution u of the problem
and the space V. The a priori error bounds in general
are not computable since they depend on the exact
solution of the problem u which in most cases is
unknown. While the a posteriori error estimators are
computable and can be computed since they depend
on the approximate solution u, which is known. For
this reason, we use a posteriori error bounds in
designing adaptive numerical methods. While the a
priori error analysis is used in the study of
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convergence of the exact solution of the original
problem. The a priori error analysis is used in finding
the order of convergence of the exact solution and it
tells us the required information about how the
convergence is fast or how it is slow. In our problem,
the a priori error bound depends on the data of the
problem, the right-hand side function f, and the exact
solution u of the original problem (1). In this section,
we consider deriving a priori error bounds for a
generic scalar linear elliptic equation and for a
generic linear system of elliptic equations.

3.1 A Priori Error Analysis for a Generic Scalar
Linear Elliptic Problems

In this section we derive a priori error estimates for a
generic scalar linear elliptic PDE in (1). Now we start
the error analysis by subtracting (9) from (2), we
obtain

a(u —up¥) = (f — fup) = 0,VY € V. (16)
Now, we splitting the error in the following form
e=u—u, = (u—mu) + @mu—uy =p+
0, (17)

where mu € V, is the interpolant of the exact
solution w € V,p = u — mu  represents the
interpolation error which is available in the literature.
The idea here is to bound the quantity 6 = mu —
u, € V, for which we do not have a bound by the
quantity in terms of p for which we have a bound,
consequently, the whole error e can then be bounded
interms of p, i.e.,

llelly = llu —uplly = |I(u — mu) + (mu —upll, =
llp + 611, < [lpl|, + [161] ,  (18)

then, we need to bound 6 by a bound depends upon p
ie.,

1611, <E(p). (19)

Finally, the whole error is bounded by a bound in
terms of p

llell, = llp + 611, < E(p) +|Ipl|, = F(p). (20)
Note that from now on we use the following notation
for the energy norm |[. [|y1¢q) = II-Ilo -

Theorem 3.1 (H} A Priori Error Bound for a

Generic Scalar Linear Elliptic Equation)

The finite element approximate solution u;, of the

problem (1), satisfies the following a priori energy

(H3) error estimate

llello = [lu —upllo < CshlIDullzeqy. (21)

Proof. Substituting e = p + 6 in (16), and testing

with ¢y = 6, we have

a(0,0) = —a(p,0) = a(-p,0), (22)

using the continuity and ellipticity of a(.,.), we have
16110 < Cillpllo,  (23)

where C; = C.ont/Ceoer, aNd

llello = 11Vell, @ = IV — )|, @) <

C Yker hlzc ||Du||L2m),

which represents the L, norm of the gradient of the

interpolation error and D is the total derivative

of the function u, and

1pl1Z, g, = llu = mul?, o < € Sier b |IDull?,

(24)
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Now, let h = max;,c-hy hence, we get

ol < Ch2||Du||L2(m, (25)

IVollL,0) < ChllDully,q, (26)

From (26), we have

llplle = 119pl1,() < CRIIDUllL, . (27)

Hence,

16116 < C,hIIDUll,, q, (28)

where C, = CC,. Finally, combining both bounds in
(27) and (28) yields the required estimate

lello < [161], +[Ioll, < CoR[IDul],  +

Cﬁ||Du||L2(m = c3E||Du||L2(m_ (29)

where C; = C + C,. Note that since u, is a
piecewise linear then Du is a piecewise constant
function and D,u,, = 0, where

6uh auh
Dy, =2k 4 S,
x ay
2 2 2
D2 = Oup Oup_, Ouy
Un d0x2 oxdy = ay?’

3.2 A Priori Error Analysis of Generic Systems
of Linear Elliptic PDEs

The techniques and results of a priori and a posteriori
error analysis for a generic scalar elliptic PDE can be
extended and generalised to a generic system of any
size of elliptic PDEs. For simplicity, we consider a
generic linear elliptic system of two equations, noting
that the case of a system of n equations follows
similarly

—€110U — €AV + kyu+ kv = fi

—€310U — €AV + kU + kv = f (30)
u=v=0 on 0Q,

where €;4, €12, €51, €5, are diffusion parameters,
ki1, k12, k21, ko, are non-negative parameters and
fi, f-» are source functions of x,y. For convenience,
we introduce a vector function

w:Ly(Q) X Ly(Q) - R,where,w = (%),

using this notation, we can express the system as a
generic scalar vector elliptic equation

—eAw + kw = f, (31)

where e=(€11 512), Awis the Laplacian

€ €
operator define::i1 elementwise Aw = (3¥) and the
function f = (g) To write (31) in the weak form,
we first multiply it by a vector function Y € H =
HE(@) 0 HE () with = (1), where 1y, 1, € V =
H}(Q), integrating over the domain Q, we get

Jq (—e4w + kw_)1p dx= [, fp dx. (32) _
Integrating the first term on the right-hand side of
(32) using Green’s formula to obtain

Jo (CAaW)Y dx = [ VWV dx — Vwiply, =

J o VWV dx, (33)

since y = 0 on 0Q because P = (ii) and w1 =y, =0
on 0Q. Substituting (33) in (32), we get

fﬂ(vele + kwy)dx = fﬂ fydx,vy € H.
Then, the variational formulation becomes

a(w,¥) = (), v € H, (34)
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where

a(w,p) = fn (eVwVy + wy)dx Vw,y € H,

and a(.,.) is the bilinear form defined as a: H X
H - R and ¢ is linear functional ¢ :H — R
defined by

W) = [, fdx, VY €EH,

where

alw,p) = fn(eVWVd) + kwy)dx = fﬂ(EVqu)l +
kup,)dx + [, (€VuVp, + kup,) dx = a(u,¥,) +
a(U, 1!’2).

which represents the bilinear form on V x V. The
right-hand side is defined by

@) = fg flpdx:fg fis + fg_ fapa dx =
(Y1) + 2(Y2) = (fu, 1) + (2, 92),

which represents the L,() inner product. The H
norm is defined as

lIwllg = o (€(WW)? + kw?)dx = |[ul[f + |Iv]]F
To solve this problem numerically, we seek an
approximation wj, = (:j:) € V,=W,xV,)cH,
which is a vector of finite element approximations of
the functions u and v. Hence the problem becomes:
find wy, € V,, such that

a(wn, @) = (¢),Vo € Vy. (35)

Theorem 3.2 (H§ A Priori Error Bound for a
Generic Linear Elliptic System) The finite element
approximate solution w;, of the problem (30), satisfies
the following a priori energy (H3) error estimate

llellp = 1w —willo < Ch (|l ,q +

L2(Q)
||v||L2(m) = ChlIDwl| , - (36)

Proof. The numerical error e = w — wj, can be
split up in the following form
e=w-—wy, =W —1nw) + (Iw — wy) =

p + 0,

where p=w-—nw €E€H represents the
interpolation error of w and p also can be split up as
p=w-—nmw=p+p,=W-—mnu + v -
v), where

lpllo < |lpal], + [lp2l], = |lu = mul| +

llv — v,

< Ch||Du||L2(m + Ch||Dv|| 120

Ch(lIDullLay + 1DV, ) = CRIIDWI] , .
where p, represents the interpolation error of u and
p, represents the interpolation error of wv.
Consequently, we have

llollo < CRIIDWI| 120,

while 8 = w — w, € V,, we do not have a bound
of 6 and we use the known bound of p to bound 8
and consequently obtaining a bound of the total error
e as follows

llello = 1lp + 0110 < [Iol], + [161]

we want to have a bound such that

116110 < Cllpllo,

and hence, we get

llello < [Iol], + l161], < C"[lol],,

Subtracting (35) from (34) results in

TJPS

a(e,p) = a(w — wh,9) = a(p + 6,9) =
0,Vo € V.

Now, testing by ¢ = 6, and
mathematical manipulations leads to
a(6,0) = —a(p,8) = a(-p,0),
using coercivity and continuity of the bilinear form,
we have

6llo < C1||,0||0,

where C; = C.ont/Ceoer- Finally, we get

llello < [lol|, + [161], < |lol|,+Cillol], =

C2||P||O,
where C, = 1 + (. Consequently, we have,
llello < C2||P||0 = CZCh||DW||

using some

L2(0)
CZCh('Ju”LZ(Q) + ||v||L2(Q)) =C h||DW||L2(ﬂ)'
where € = C,C.
4 A Posteriori Error Analysis of Linear
Elliptic PDEs

A posteriori error analysis is a very important and
efficient technique in devising robust, efficient and
effective adaptive methods. It is used for finding a
bound or estimate for the error e = u — uy, in terms
of the approximate solution uy, data of the problem
and the right-hand side function f. We need to find an
a posteriori estimator function F = F(u,, f;V)
which depends upon the functions wu,, f and the space
V, such that f satisfies the following relation
||e||V = ||u - uhI|V < F(uy f5V). The a
posteriori error estimators help in reducing the
computational cost of solving a problem using the
numerical method and this is the crucial aspect for
any effective and reliable adaptive method. In this
section, we derive the a posteriori residual based error
bounds for a generic scalar linear elliptic equation
and a generic linear system of elliptic equations.

4.1 A Posteriori Error Analysis for a Generic
Scalar Linear Elliptic Problems

We consider the BVP (1) when A = —e A which
becomes

—eAu+ku=fonQ, (37)

u = 0onodqQ,

where k,u,f as in (1) and € > 0 is the diffusion
parameter.

Theorem 4.1 (H} A Posteriori Error Bound for a
Generic Scalar Linear Elliptic Equation)

The finite element approximate solution u, of the
problem (37), satisfies the following a posteriori
energy (H}) error estimate

llell§ + [lu—upll§ < Zker&i (up), (38)

where &g (uy) is the element wise residual which is
defined as

&x(uy) = .

1
bl IRCun)l ez + 5 by 11D Vundll o1, 3+ (39)
where R(uy,) = f + €Auy, + kuy, is the residual which
expresses the amount the approximate solution u

misses to satisfy the weak form and R € V°is the
residual operator and V° is the dual space of V =
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H3(Q), and [n.Vu,]is the jump in the normal

derivative of the approximate solution u, on the

interior edges of element K.

Proof. Subtracting the finite element approximation

weak form (9) from (2), this yields

a(u—u_h,v) = fn (eVu—u_h).Vv+k(u
—u_h)v)dx =0, Vv €V.(40)

Lete = u — uy, then we get

ale,v) = fﬂ (eVe.Vv + kev)dx =0,

V. (41)

Now, testby v = e € V, we obtain

a(e,e) = |lel|3 = [,(e(Ve)* + ke?)dx = 0. (42)

Note thate € H3 (Q) since e = u—u, = 0 on 9Q

and |lel|, = |lel|, when €=k = 1. Using Galerkin

orthogonality, we have

llel|3 = efﬂ Ve.V(e —me)dx + k fﬂe(e —me)dx,

(43)

where me is the interpolant of e. Integrating

elementwise and using Green’s formula on the first

integral on the left-hand side, we obtain

llel|3 = efQVe.V(e —me)dx + k fﬂe(e —me)dx =

Yker — €[ Ae(e — me)dx

+e [, n.Ve(e — me)ds + Yyer k [, e(e —me)dx,

where T is the triangulation of the domain Q. Notice

that e and its interpolant ze both vanish on the

boundary (9€), this yields

llel|3 = Yker —€f, Ve.V(e —me)dx +k [ e(e—

me) dx = Yyer — Efak/an Ae(e —me)dx + ef[m

n.Ve(e — me)ds + Yyer k fK e(e —me)dx. (44)

Upon observing that (—eAe + ke)|, = (f + eAu,, —

kuy)|y , we obtain

Ilell3 ZZkETfK(f+€Auh_kuh)(e_ﬂe)dx +

Zkerffak/ag n.Ve(e — me)ds, (45)

since we have two contributions from each edge E

(because the edge E is a common edge between two

elements (triangles) K* and K-, considering these

contributions, we arrive at

fak+/ak— n.Ve(e — me)ds = fE(nJ’.Ve+ (et —

wet)+n".Ve” (e~ —me™))ds, (46)

since the error function is continuous, so we have

(e+ —me+)|E = (e — —me—)|E.

Therefore,

fak+/ak— n.Ve(e — me)ds = fE (n*.Vet (et —

met)+n".Ve  (e” —me™))ds (47)

= [, (n*.Ve* + n~ Ve™)(e — me) ds.

Also, since uy is a piecewise linear function then its

[ oweq n. Ve(e — me)ds gradient Vuy, |y is a piecewise

constant function and in general is not continuous.

Hence, we should take into consideration that the

jump in normal derivative n. Vu, may be different on

neighbouring elements K* and K~. In addition, the

gradient Vulg is continuous, so the jump term

(n*.Vut + n~.Vu7)|; = 0. Consequently, we

obtain

Vve
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Jp "Ve" + nve)e - — [, (N"Vu' + n VU,
me) ds = )(e — 7€) ds

= - [, hVule—- (48)

me) ds.

From (48), we conclude that
Yker fK n.Ve(e — me)ds =

— Yeer, [ 5 [n.Vu,] (e — me)ds. (49)

Using the fact that each element contributes by half
amount of the jump, we finally have

llell§ = Tker J  (f + duy, — kuy) (e — me)dx —
% fak/an [n.Vu, (e — me)ds. (50)
The equation in (50) is called the error representation
formula. Now, returning back to the first term on the
right-hand side of (50), we can bound it using the
standard interpolation error bounds and Cauchy -
Schwarz inequality to obtain

fK(f + eAuy, — kuy)(e — me)dx < ||f + eAuy, —
kuhl'LZ(k) [le — ”eHLz(k) (51)

< |If + eduy, — kuh”LZ(k) Chy |1Del|Laq)-

Using the scaled trace inequality for the edge

contribution, we get
2

[le _7Te||L2(ak) < C(hil ||e _7Te||L2(k) +
2
b [19Ce = me)l, ). (52)
Inserting (52) in (51) with the aid of the Cauchy-
Schwarz inequality, we get

fﬁk [n.Vu,l(e — me)ds < ||[n. Vuh]lle(ak)“e -
mell o0 (53)

< (1. Vil g CChE™ Nl = el [}, +

by |IDCe = o), )

|| [n. Vuh]”LZ(i)k)Ch% [1DellL2k) -

Notice that, we used in (53), the standard

interpolation error estimates. Combining (51) and
(53) in (54), we finally have

2
llell? < C Sier(h2 |If + etuy — kuyl[ +

L2 | V1| = € Yer €2 (up). (54)
> e VUl gk, ) T & dker Sic (Un)-

4.2 A Posteriori Error Analysis for a Generic
System of Linear Elliptic Equations

In this section, we consider deriving a posteriori error
estimate for the general linear system of elliptic
equations in (30).

Theorem 4.2 (H} A Posteriori Error Bound for a
Generic Linear Elliptic System)

The finite element approximate solution wy, of the
problem (30), satisfies the following a posteriori
energy (H}) error estimate

el = [lw — wy 1§ < CXer & (Wn), (55)

where € (wy,) is the elementwise residual which is
defined as &(wn) = hi|[R(Wh)2c) +

1
: h,/[I[n. wnlll (k) (56)

where  R(wy) = f+ eAwy, + kwy,  is the residual
which expresses the amount the approximate solution
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wy, misses to satisfy the weak form and R € V) is the
residual operator, and [n.Vw,] is the jump in the
normal derivative of the approximate solution wy on
the interior edges of element K.
Proof. Following the same steps as before, we arrive
at the following weak forms
aw,p) =4(p), Yo € Vp, (57)
And
a(wy, @) =£(p), Vo € Vy, (58)
subtracting (58) from (57), we get
ale,p) =alw —wy, ) =0, VE v,
where
e =w-w=() - ()= () =(3)
Now, testingby ¢ = e € H, we have
a(e,e) = |lel|3 = [, (e(Ve)? + ke?)dx.
Using Galerkin orthogonality, we get
llel|3 = € fQVeV(e —me)dx +k fﬂ e(e —me) dx =
Yier —€J (Ae(e — me)dx
+ef, n.Ve(e — me)ds + Yyer [, e(e — me)dx,
where
me = (12¢) = (4. ve = (32r) = (G
where e, is the interpolation error for the function u
and me, is the interpolation error for the function
v, Ve, is the gradient of the interpolation error of u
and Ve, is the gradient of the interpolation error of v.
Noting that (—elAe + ke)|, = (f + eAwy, — kwy) |,
where
(—elhe, + kel = (f + eAuy, — kuy),
and
(—elhe, + ke,) |, = (f + €Ae, — kvy,).
Considering the contributions of the internal edge E
between the two elements (triangles) K™ and K~, we
obtain
fak+nak— n.Ve(e — me)ds = fE (n*.Vn*(e* —
net) + Ve (e~ —me™))ds,
where

+ + - -
e = () = (o) e = () = (E20°).

since the error function is continuous, we have

(e — meM|E = (e — me)lg,

where (ef —meD)|g = (e —me)|s = and
(e5 —me)|e = (e; —me;)|e

Therefore,

faK+naK— n.Ve(e — me)ds = fE (n*tvet +
n~Ve )(e — me)ds.
Also, since the approximate functions u, and v, are
piecewise linears then their gradients Vu,|; and
Vv, |g are piecewise constants. So, we have to take
into account that the jumps in normal derivatives
n.Vu, and n.Vv, may be not the same on the
adjacent elements K* and K~. Moreover, the
gradients Vu|g and Vv|g are continuous. Hence, the
jump terms are
(n*t.Vut + n~.Vu7)|g
= O0and (n*.Vvt + n~.Vv7)|
= 0.
So, we have
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fE(n+Ve+ +n"Ve )(e —me)ds = - fE (n*vw; +
n~Vwy)(e — me)ds =

-fE(anVuf{ + n~Vuy)(e — me)ds — fE (n*vyi +
n~Vv,)(e — me)ds

= - fE[nVuh](e —me)ds — fE[anh]( e—

me)dx = —
fE (n+V(uf{ + v+ nV(y; + v,:))(e -
me)ds = — [ [nVw,]( e — me)ds.

Upon observing that every element contributes by
half amount of the jump, so we get

llell§ = Xker fK(f + eAwy, — kwy) (e — me)dx —
1
Efak/an [nVw,](e — me)ds
= Yker fK (f + €118up, + €180, — kyqup —
ki,vy) (e — me)ds
+ Xker fK (f2 + €218uy, + €550V, — kyuy, —
k,,v,) (e — me)ds

1
_z_fak/an [nVu,, + nVv,](e — me).
Using standard interpolation error estimates and some
mathematical techniques, we arrive at

Jo (f+ebwy, —kwyy(e—me)ds <|If +ew, —
kwh||
<
|Ifs + €r18uy, + €180, — kyquy, —
k12Vh||L2(Q) Chy 11Dey |12

+|If2 + €218up + €2,Av, — kpqup, —
kzzvh”LZ(Q) Chy, ||Deu||L2(n)-

Using the scaled version of the trace-inequality, we
get

—ne||

L2(Q) ||e L2(Q)"

lle — mell200) = llew — mellizn) + |ley —
ey || 20k) -
_ 2
<C (hkl le, — ﬂeu||L2(k) + hy |1V (e, —
2
T[e”)”LZ(k))
- 2
+C (hk1 |le, — nev||L2(k) + hy ||V (e, —

2
el )
Using this inequality with the Cauchy-Schwarz
inequality, we obtain

f,m [nVwy](e — me)ds < [[nVwy|| 200 lle —
7Te||L2(k)

_ 2
< |I[nvwh]||Lz(an) C(hk1 |le —ne||L2(k) +

helIDCe =, . )
[InYw,l| . Ch'/z [IDel| a0

IA

L2(0%)

(ltnvanil, 0 +

1
||[anh]||L2(am) Ch'/2 [IDellL2(a1)-
Finally, we get
llellZ = lleul3 + lle, 13 < € Sier(h? |If + ebw,, —

1
2 +% hk/2||[TlVWh] ||

kewp,| |L2(k)

. )
12%%/5
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< C Yrer(hi( ||f1 + €118uy, + €314V, — kyquy —

2
k120 |L2(k))

2
+|If2 + €218 + 2280y — kgt — kzzvh”Lz(k)))
2

L2%%/5q,

=C (ZkET(fIE (uh)flg(vh))) = Yker fl% (wp).

5 Conclusions

We studied the error analysis of the finite element
solution of generic scalar linear elliptic BVP and also,
we considered the error analysis of the finite element
solution of a generic system of linear elliptic
equations in 2D. Continuous Galerkin finite element

1,1,
+3 h, (||[nvuh]|| + ||[nvvh]||

: )
L2(ak/aﬂ)
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