

TIKRIT JOURNAL OF PURE SCIENCE

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index

Weakly Quasi 2-Absorbing submodule

Haibt K. Mohammadali, Khalaf H Alhabeeb

Department of mathematics, College of computer science and mathematics, Tikrit University, Tikrit, Iraq

ARTICLE INFO.

Article history:

-Received: 14 / 3 / 2018 -Accepted: 10 / 4 / 2018 -Available online: / / 2018

Keywords: weakly quasi-prime submodule, 2-absorbing submodule, weakly quasi 2-absorbing submodule.

Corresponding Author:

Name: Khalaf H Alhabeeb

E-mail:

khalif.alhabeeb@gmail.com

Tel:

1- Introduction

The concept of weakly quasi-"prime submodule which is a generalization of" a weakly" prime submodule was introduce by in [1], "where a proper submodule E of an R-module M is called weakly quasi-prime submodule if whenever $r,s\in R,m\in M$, with $0\neq rsm\in E$, implies that either $rm\in E$ or $sm\in$ ". And "a proper submodule E of an R-module M is called weakly prime submodule if whenever $r\in R,m\in M$, with $rm\in E$ then $m\in E$ or $r\in [E:M][2]$ ", where "[E:M] = { $r\in R$; $rM\subseteq E$ }"." A proper submodule E of an R-module M is called 2-absorbing (weakly 2-Absorbing) if whenever $r,s\in R,m\in M$ with $rsm\in E$ (0 $\neq rsm\in E$), then $rm\in E$ or $sm\in E$ or $rs\in [E:M][3]$ ".

In this work we generalized the concept of weakly quasi-prime submodule to a weakly quasi 2-absorbing submodule , a proper submodule E of an R-module M is called weakly quasi 2-absorbing if whenever r , s , t \in R, m \in M , with 0 \neq rstm \in E imples that either rsm \in E or stm \in E or stm \in E . Furthermore, we prove that every "2-absorbing (weakly 2-absorbing) submodule is weakly" quasi 2-absorbung submodule .

2 – Weakly quasi 2-absorbing submodules

In this section we introduce, the definition of weakly quasi 2-absorbing submodule, as a generalization of weakly quasi prime submodule.

Definition 2.1

A Proper submodule E of an R- module M is called a weakly quasi 2-absorbing, if whenever $\ r$, s, t \in R,

Abstract

Let R be a commutative ring with identity , and M is a unitary left R-module", "A proper submodule E of an R-module M is called a weakly quasi-prime if whenever r, $s \in R$, $m \in M$, with $0 \neq rsm \in E$, implies that $rm \in E$ or $sm \in E$ ". "We introduce the concept of a weakly quasi 2-absorbing submodule as a generalization of weakly quasi-prime submodule", where a proper submodule E of M is called a weakly quasi 2-absorbing submodule if whenever r,s,t $\in R$, $m \in M$ with $0 \neq rstm \in E$, implies that $rsm \in E$ or $rtm \in E$ or $stm \in E$. we study the basic properties of weakly quasi 2-absorbing. Furthermore, the relationships of weakly quasi 2-absorbing submodule with other classes of module are elistraited.

 $m \in M$, with $0 \neq rstm \in E$, then $rsm \in E$ or $rtm \in E$ or $stm \in E$

And an ideal of a ring R is weakly quasi 2-absorbing if if it is a weakly quasi 2-absorbing submodule of an R-module R.

Remark 2.2

Every weakly quasi-prime "submodule of an R-module M is a weakly" quasi 2-"absorbing submodule of M" but the converse need not to be true.

Proof

Assume E is a weakly quasi-prime submodule of an R-module M , and let $0 \neq rstm \in E$, where $r,s,t \in R$, $m \in M$, and suppose that $rsm \notin E$. Then $0 \neq rs(tm) \in E$. By hypothesis we have $r(tm) \in E$ or $s(tm) \in E$. That is $rtm \in E$ or $stm \in E$. Hence E is weakly quasi 2-absorbing submodule in M .

For the converse consider the following example :- let M=Z, R=Z and E=4Z. E is a weakly quasi 2-absorbing submodule , but not weakly quasi-prime submodule of Z since $2 \cdot 2 \cdot 3 \in 4Z$ where $2 \cdot 3 \in Z$, but $2 \cdot 3 = 6 \notin 4Z$, and 4Z is weakly quasi 2-absorbing since $0 \neq 1 \cdot 2 \cdot 2 \cdot 1 \in 4Z$, we have $2 \cdot 2 \cdot 1 \in 4Z$.

PROPOSITION 2.3

"Let E and D be a submodules of an R-module M with $E\subseteq D$ ". If E is a weakly quasi 2-absorbing submodule in M. then E is a weakly quasi 2-absorbing submodule in D.

Proof

Assume that $0 \neq rstm \in E$ with r, s, $t \in R$, $m \in D \subseteq M$, hence $m \in M$. Since E is weakly quasi 2-absorbing submdule in M, then $rsm \in E$ or $rtm \in E$ or $stm \in E$. Hence E is weakly quasi 2-abosrbing in D.

REMARK 2.4

A submodule of a weakly quasi 2-absorbing submodule need not to be a weakly quasi 2-absorbing . The following example explain that .

Let M = Z, R = Z, and E = 4Z, D = 36Z. 4Z is a weakly quasi 2-absorbing in Z, and we have $36Z \subseteq 4Z$, 36Z is not weakly quasi 2-absorbing in Z, since $0 \neq 2 \cdot 2 \cdot 3 \cdot 3 \in 36Z$, but $2 \cdot 2 \cdot 3 = 12 \notin 36Z$,

PROPOSITION 2.5

Let E and D are a submodules of a module M with D⊆E. Then E is a weakly quasi 2-absorbing in M if and only if $\frac{E}{D}$ is weakly quasi 2-absorbing in $\frac{M}{D}$.

Proof

Let E weakly quasi 2-absorbing in M , and let $0 \neq rst(m+D) \in \frac{E}{D}$, where r , s , t \in R , m+D $\in \frac{M}{D}$, m \in M . It follows that $0 \neq rstm \in E$. Since E is a weakly quasi 2-absorbing submodule in M , then either rsm \in E or rtm \in E or stm \in E . It follows that either rsm+D $\in \frac{E}{D}$ or rtm+D $\in \frac{E}{D}$ or stm+D $\in \frac{E}{D}$ or stm+D $\in \frac{E}{D}$ or st(m+D) $\in \frac{E}{D}$ or st(m+D) $\in \frac{E}{D}$ or st(m+D) $\in \frac{E}{D}$ or stm-D $\in \frac{E$

Conversly: suppose that $\frac{E}{D}$ is weakly quasi "2-absorbing submodule" in $\frac{M}{D}$, with let $0 \neq \operatorname{rstm} \in E$, where r, s, $t \in R$, $m \in M$. Hence $0 \neq \operatorname{rstm} + D \in \frac{E}{D}$. That is $0 \neq \operatorname{rst}(m+D) \in \frac{E}{D}$. Since $\frac{E}{D}$ is a weakly quasi 2-absorbing in $\frac{M}{D}$, then either $\operatorname{rs}(m+D) \in \frac{E}{D}$ or $\operatorname{rt}(m+D) \in \frac{E}{D}$ or $\operatorname{st}(m+D) \in \frac{E}{D}$ or $\operatorname{st}(m+D) \in \frac{E}{D}$. It follows that either $\operatorname{rsm} + D \in \frac{E}{D}$ or $\operatorname{rtm} + D \in \frac{E}{D}$ or $\operatorname{stm} + D \in \frac{E}{D}$. Thus either $\operatorname{rsm} \in E$ or $\operatorname{rtm} \in E$ or $\operatorname{stm} \in E$. Hence E is a weakly quasi "2-absorbing submodule".

REMARK 2.6

The intersection of two weakly quasi 2-absorbing "submodules of an R-module M" need not to be weakly quasi 2-absorbing submodule in M as the following example explain that:

Let M = Z, R = Z, E = 4Z, D = 9Z, are weakly quasi 2-absorbing submodules in Z. But $E \cap D = 36Z$ is not weakly quasi 2-absorbing submodule in Z.

PROPOSITION 2.7

The intersection of two quasi-prime submodules "of an R-module M" is weakly quasi 2-absorbing submodule"

proof

Let E, D be two quasi-prime "submodules of M", with $0 \neq rstm \in E \cap D$, where r, s, t $\in R$, m $\in M$, since E is a quasi-prime submodule in M we assume that rm $\in E$, also since D is quasi-prime in M, we

assume that $sm\in D$, it follows that $rsm\in E\cap D$. Hence $E\cap D$ is weakly quasi 2-absorbing submodule in M .

"Since every" weakly "prime submodule is a weakly quasi-prime submodule[1"]. Hence we get the following result.

COROLLARY 2.8

The intersection of two weakly prime "submodule of an R-module M" is weakly quasi "2-absorbing".

PROPOSITION 2.9

The inverse image of weakly quasi 2-absorbing submodule is weakly quasi 2-absorbing submodule.

Proof

We assume that f is an R-epimorphism from M to M and E is weakly quasi 2-absorbing of M. Let $0 \neq 1$

rstm $\in f^{-1}(E)$, where r, s, t \in R, m \in M. It follows that $0 \neq \operatorname{rstf}(m) \in E$, but E is weakly quasi 2-absorbing in M, then either $\operatorname{rsf}(m) \in E$ or $\operatorname{rtf}(m) \in E$ or $\operatorname{stf}(m) \in E$, then it follows that $\operatorname{rsm} \in f^{-1}(E)$ or $\operatorname{rtm} \in f^{-1}(E)$ or $\operatorname{stm} \in f^{-1}(E)$. Thus $f^{-1}(E)$ is a weakly quasi 2-absorbing in M.

PROPOSITION 2.10

<u>"Let f: M \rightarrow M'</u> be an R-epimorphism, and E be a proper submodule of M with Ker(f) \subseteq E". Then E is a weakly quasi 2-absorbing submodule in M iff f(E) is a weakly quasi 2-absorbing submodule in M'.

Proof (\rightarrow)

Assume that $0 \neq rstm \in f(E)$, where r, s, $t \in R$, $m \in M$, since f is onto, then m = f(m) for some $m \in M$. Hence $0 \neq rstf(m) \in f(E)$, implies that $0 \neq f(rstm) = f(e)$ for some nonzero $e \in E$. Hence f(rstm - e) = 0, implies that $0 \neq rstm \in Kerf \subseteq E$. That is $0 \neq rstm \in E$, since E is a weakly quasi 2-absorbing in M, then either $rsm \in E$ or $rtm \in E$ or $stm \in E$. It follows that either $rsf(m) \in f(E)$ or $rtf(m) \in f(E)$ or $stf(m) \in f(E)$. That is either $rsm \in f(E)$ or $rtm \in f(E)$ st $m \in f(E)$. Hence f(E) is a weakly quasi 2-absorbing.

← Let $0 \neq \operatorname{rstm} \in E$, where r, s, $t \in R$, $m \in M$, then $0 \neq f(\operatorname{rstm}) \in f(E)$, it follows that $0 \neq \operatorname{rstf}(m) \in f(E)$. But f(E) is a weakly quasi 2-absorbing in M, then either $\operatorname{rsf}(m) \in f(E)$ or $\operatorname{stf}(m) \in f(E)$ or $\operatorname{rtf}(m) \in f(E)$. If $\operatorname{rsf}(m) \in f(E)$, implies that $f(\operatorname{rsm}) = f(e_1)$ for some nonzero $e_1 \in E$, hence $f(\operatorname{rsm} - e_1) = 0$, implies that $\operatorname{rsm} - e_1 \in \operatorname{Kerf} \subseteq E$, it follows that $\operatorname{rsm} \in E$. Similarly we get $\operatorname{stm} \in E$ or $\operatorname{rtm} \in E$, Hence E is a weakly quasi 2-absorbing in M.

REMARK 2.11

If K, L are submodules M with K isomorphic to L and K is a weakly quasi 2-absorbing submodule, then L is not weakly quasi 2-absorbing submodule. The following example shows that;

Let M=Z, R=Z, K=2Z, L=8Z, are submodule of M, $2Z{\cong}8Z$, we have 2Z weakly quasi 2-absorbing submodule, but 8Z is not weakly quasi 2-absorbing in Z, since if $0{\neq}2$. 2. 2. $1 \in 8Z$, 2. 2. $1 \notin 8Z$.

PROPSITION2.12

Every weakly 2-absorbing submodules of M is weakly quasi 2-absorbing submodule.

Proof

Assume that E is a weakly 2-absorbing in M , and let $0 \neq rstm \in E$ with r, s, $t \in R$, $m \in M$. Therefore either $r(tm) \in E$ or $s(tm) \in E$ or $rs \in [E:M]$. The first two cases lead us to that E is a weakly quasi 2-absorbing in M.

PROPOSITION 2.13

Assume that \overline{M} is cyclic module, and E be a proper submodule of M. Then E is a weakly 2-absorbing in M iff E is a weakly quasi 2-absorbing in M.

Proof

The first part follows by proposition (2.12)

The second part: suppose that M is a weakly quasi 2-absorbing in M , it is given that M is cyclic , mean that M=Rx for some $x \in M$. Let $0 \neq rsm \in E$, with r, s in R , m in M , m=tx, where $t \in R$. Thus $0 \neq rstx \in E$, since E is a weakly quasi 2-absorbing in M , then either $rsx \in E$ or $rtx \in E$ or $stx \in E$ and hence either $rs \in [E:x] = [E:M]$ or $rm \in E$ or $sm \in E$. Since "every 2-absorbing submodule is weakly 2-absorbing [5]", we get the following corollary.

Corollary 2.14

Let E be 2-absorbing "submodule of an R-module M". Then E is a weakly quasi 2-absorbing.

PROPOSITION 2.15

"Let M be an R-module, and E be a proper submodule of M". Then E is a weakly quasi 2-absorbing in M iff [E: m] is a weakly quasi 2-absorbing ideal of R for every $m \notin E$.

Proof (\rightarrow)

We have [E : m] proper ideal in R , since $m \in M$, $m \notin E$. Let $0 \neq rst \in [E: m]$, where r , s , $t \in R$ then $0 \neq rstm \in E$, but E is a weakly quasi 2-absorbing submodule in M , then either $rsm \in E$ or $rtm \in E$ or $stm \in E$ hence $rs \in [E:M]$ or $rt \in [E:M]$ or $st \in [E:M]$, hence $star \in E$ hence $star \in E$ and $star \in E$ hence $star \in E$ hence

PROPOSITION 2.16

Let E be proper weakly quasi 2-absorbind submodule of an R-module "M then S^{-1} E " weakly quasi 2-absorbing submodule of S^{-1} M as S^{-1} R – module.

Proof

Let $0 \neq \overline{a} \overline{b} \overline{c} \, \overline{m} \in S^{-1} E$, where $\overline{a} = \frac{a_1}{s_1}, \overline{b} = \frac{b_1}{s_2}, \overline{c} = \frac{c_1}{s_3}$ are elements in $S^{-1} E$, where a_1 , b_1 , $c_1 \in R$, and $\overline{m} = \frac{m_1}{s_4} \in S^{-1} M$, where $m_1 \in M$, s_1 , s_2 , s_3 , $s_4 \in S$. Hence $0 \neq \frac{a_1}{s_1}$. $\frac{b_1}{s_2}$. $\frac{c_1}{s_3}$. $\frac{m_1}{s_4} \in S^{-1} E$, that is $0 \neq \frac{a_1}{s_1} \frac{b_1}{s_2} \frac{c_1}{s_3} \frac{m_1}{s_4} \in S^{-1} E$, it follows that $0 \neq \frac{a_1}{t} \frac{b_1}{t} \frac{c_1}{t} \frac{m_1}{t} \in S^{-1} E$, where $t = s_1 s_2 s_3 s_4 \in S$, then there exist $t_1 \in S$ such that $0 \neq t_1 a_1 b_1 c_1 m_1 \in E$, but E is a weakly quasi 2-absorbing in E, then either E is a weakly quasi 2-absorbing in E is or E in E or E in E

If
$$t_1 \ a_1 \ b_1 \ m_1 \in E$$
, then $\frac{t_1 \ a_1 \ b_1 \ m_1}{t_1 \ s_1 \ s_2 \ s_4} \in S^{-1} E$, so,
$$\frac{a_1}{s_1} \ \frac{b_1}{s_2} \ \frac{m_1}{s_4} \ \in S^{-1} E$$
If $t_1 \ a_1 \ c_1 \ m_1 \in E$, then
$$\frac{t_1 \ b_1 \ c_1 \ m_1}{t_1 \ s_2 \ s_3 \ s_4} \in S^{-1} E$$
, so,
$$\frac{b_1}{s_2} \ \frac{c_1}{s_3} \ \frac{m_1}{s_4} \ \in S^{-1} E$$
If $t_1 \ b_1 \ c_1 \ m_1 \in E$, then
$$\frac{t_1 \ a_1 \ c_1 \ m_1}{t_1 \ s_1 \ s_3 \ s_4} \in S^{-1} E$$
, so,
$$\frac{a_1}{s_1} \ \frac{c_1}{s_3} \ \frac{m_1}{s_4} \ \in S^{-1} E$$

Thus either $\bar{a} \ \bar{b} \ \bar{m} \in S^{-1} E$ or $\bar{a} \ \bar{c} \ \bar{m} \in S^{-1} E$ or $\bar{b} \ \bar{c} \ \bar{m} \in S^{-1} E$.

Hence $S^{-1}E$ is a weakly quasi 2-absorbing in $S^{-1}M$. **PROPOSITION 2.17**

Let E "be a proper submodule of an R-module M_1 " Then E is a weakly quasi 2-absorbing submodule in M_1 iff $E \oplus M_2$ I is a weakly quasi 2-absorbing submodule of an R-module $M_1 \oplus M_2$, where M_2 is an R-module .

Proof

Let $(0,0) \neq \operatorname{rst}(m_1,m_2) \in E \oplus M_2$, where $r,s,t \in R$, $(m_1,m_2) \in M_1 \oplus M_2$ with m_1 is a nonzero elemest in M_1 and m_2 is a nonzero element in M_2 , it follows that $0 \neq \operatorname{rst} m_1 \in E$ or $0 \neq \operatorname{rst} m_2 \in M_2$. But E is a weakly quasi 2-absorbing in m_1 , then either $\operatorname{rs} m_1 \in E$ or $\operatorname{rt} m_1 \in E$ or $\operatorname{st} m_1 \in E$, it follows that either $\operatorname{rs} (m_1,m_2) \in E \oplus M_2$ or $\operatorname{rt} (m_1,m_2) \in E \oplus M_2$. Hence $E \oplus M_2$. Is a weakly quasi 2-absorbung in $m_1 \oplus m_2$.

Conversely: suppose that $E \oplus M_2$ is a weakly quasi 2-absorbing in $M_1 \oplus M_2$

, and let $0 \neq \operatorname{rst} m_1 \in E$, where r , s , t $\in R$, m_1 is a nonzero element in M_1 .

Then for each $m_2 \in M_2$, we have $0 \neq \operatorname{rst}(m_1, m_2) \in E \oplus M_2$, since $E \oplus M_2$ is a weakly quasi 2-absorbing in $M_1 \oplus M_2$, then either $\operatorname{rs}(m_1, m_2) \in E \oplus M_2$ or $\operatorname{st}(m_1, m_2) \in E \oplus M_2$ or $\operatorname{rt}(m_1, m_2) \in E \oplus M_2$. It follows that either $\operatorname{rs}m_1 \in E$ or $\operatorname{rt}m_1 \in E$ or $\operatorname{st}m_1 \in E$, Hence E is a weakly quasi 2-absorbing submodule in M_1 .

PROPOSITION2.18

Let E "be a proper submodule of an R-module" M_2 , then E is a weakly quasi 2-absorbing in M_2 if and only if in $M_1 \oplus E$ is a weakly quasi 2-absorbing in $M_1 \oplus M_2$.

Proof

Similarly as in proposition (2.17)

"PROPOSITION 2.19

Let M be an R-module, and E be a proper" submodule of M. Then the statements are equivalents. 1-E is a weakly quasi 2-absorbing submodule in M 2-F or each r, s in R, m in M if $0 \neq r$ sm $\notin E$, then [E:r sm]=[E:r m $] \cup [E:s$ m] 3-F or each r, s in R, m in M if $0 \neq r$ sm $\notin E$, then [E:r sm]=[E:r m] or [E:r sm]=[E:r].

Proof

 $1 \Rightarrow 2$

Let $t \in [E:rsm]$, then $0 \neq rstm \in E$. Since E is a weakly quasi 2-absorbing in M and $0 \neq rsm \notin E$, then either $stm \in E$ or $rtm \in E$, then $t \in [E:sm]$ or $t \in E$

[E:rm], hence [E:rsm] \subseteq [E:sm] \cup [E:rm]. Now, let $t \in$ [E:rm] \cup [E:sm], then rtm \in E or stm \in E, implies that rstm \in sE \subseteq E or rstm \in rE \subseteq E, then we get rstm \in E.

Thus $t \in [E:rsm]$, hence $[E:rm] \cup [E:sm] \subseteq [E:rsm]$.

Thus $[E: rsm] = [E: rm] \cup [E: sm]$.

 $(2) \Rightarrow (3)$: suppose that $[E:rsm] = [E:rm] \cup [[E:sm]]$ and [E:rsm] is an ideal of R, then either $[E:sm] \subseteq [E:rm]$ or $[E:rm] \subseteq [E:sm]$. It follows that [E:rsm] = [E:rm] or [E:rsm] = [E:rm].

 $(3) \Rightarrow (1)$: suppose that [E:rsm] = [E:rm] or [E:rsm] = [E:sm], where $r, s \in R$, $m \in M$, and let $0 \neq rstm \in E$, then we get $t \in [E:rsm]$. If [E:rsm] = [E:rm], then $t \in [E:rm]$, implies that $ttm \in E$. If [E:rsm] = [E:sm], then $t \in [E:rsm]$, implies that $t \in [E:rsm]$, it follows that $ttm \in E$. Hence E:rmm = [E:rsm].

References

- [1] Waad K. H "Weakly Quasi-Prime Modules and Weakly Quasi-Prime Submodules", M. Sc. Thesis Tikrit University 2003.
- [2] Ebrahimi S. Farzalpour F. "On Weakly Prime submodules", Tamkang Journal of Mathematics 38 (3) (2007), 247 252.
- [3] Darani A., Soheilnia F. "2-Absorbing and Weakly 2-Absorbing submodules". Tahi Journal of Mathematic, 9, (2011), 577 584.

"Recall that a proper submodule E of an R- module is called quasi prime if $rsm \in E$, where r, $s \in R$, $m \in M$ implies that either $rm \in E$ or $sm \in E$ " [4].

It is well known that every quasi prime submodule is a weakly quasi –prime [1] , we get the following result .

PROPOSITION 2.20

quasi prime submodule is weakly quasi 2-absorbing.

Proof

Follows by Remark (2.2)

"Recall that a proper submodule N of an R-module M is a prime if $rm \in N$, with $r \in R$, $m \in M$, implies that either $m \in N$ or $r \in [N:M][6]$ ".

"It is well known prime submodule is quasi-prime [4]", we have the following corollary.

COROLLARY 2.21

Every prime submodule is weakly quasi 2-absorbing. **Proof**: Follows by proposition (2.20).

- [4] Muntaha A. R. " Quasi-Prime Modules and Quasi-Prime submodules", M.Sc. Thesis, Baghdad university 1999.
- [5] Moradi S., Azizi A. "Weakly 2-Absorbing Submodule of Modules". Turkish Journal of Mathematics, 40, (2016) 350 364.
- [6] Anderson D., Bataineh M. " Generalization of Prime Ideals " comm . Algebra , 39 (2008) $686-696\,$

المقاسات الجزئية المستحوذة من النمط - 2 الظاهرية الضعيفة

هيبة كربم محمد على ، خلف حسن الحبيب

قسم الرباضيات ، كلية علوم الحاسوب والرباضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

لتكن R حلقة ابداليية بمحايد و ليكن M مقاسا ايسر احادي على R . يقال للمقاس الجزئي الفصلي من المقاس Mمهقاس ظاهري اولي ضعيف اذا كان $r,s\in R$ و $m\in M$ حيث ان $m\in M$ عيدي الى ان $m\in M$ او $m\in M$ في هذا البحث قدمنا مفهوم المقاس $m\in M$ الظاهري الاولي الضعيف , حيث انه يدعى المقاس الجزئي الفصلي $m\in M$ مقاسا جزيئا مستحوذا من النمط $m\in M$ عيدي المقاس الجزئي الفصلي $m\in M$ المقاسات الأساسية لهذا النوع من $m\in M$ و $m\in M$ عيدي المقاس الجزئي مع المقاسات الأخرى وضحت.