TJPS

TIKRIT JOURNAL OF PURE SCIENCE

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index

On Generalize Some Weak Forms of Supra Mappings in Intuitionistic Topological Spaces

Samer, R. Yaseen¹, Hind, F. Abbas

ARTICLE INFO.

Article history:

-Received: 6 / 12 / 2017 -Accepted: 21 / 1 / 2018

-Accepted: 21 / 1 / 2018 -Available online: / / 2018

Keywords: Intuionistic Topology, Intuitionistic, Generalized Pre supra mapping, Intuitionistic Generalized Semi supra mapping, Intuitionistic Generalized α -supra mapping, Intuitionistic Generalized β -supra mapping.

Corresponding Author:

Name: Samer, R. Yaseen

E-mail: amer2017@tu.edu.iq

Tel:

1. Introduction

Zadeh [1] was introducing **the** concept of "fuzzy set" in 1965. After that in

1968 Chang [2] introduced the concept of "fuzzy topology" .Also in 1983, Atanassov

introduced the concept of "Intuitionistic fuzzy set " [3,4]. Finally Coker [5],

introduced concept of " intuitionistic sets" and using it to introduce the concept of "

intuitionistic topological spaces" [6].

In this paper we generalize some weak forms of supra mappings in Intuitionistic topological spaces and studied some of their properties and relationships among them.

2. Preliminaries

Definition 2.1 [5] Let $M \subseteq X \neq \emptyset$ and. The Intuitionistic set \widetilde{M} (IS, for short) is the

form $\widetilde{M}=\langle x,M_1,M_2\rangle$ and M_1 , $M_2\subseteq X$ with condition $M_1\cap M_2=\emptyset$. The set M_1

is called "the set of members" of \widetilde{M} and $\,M_2\,$ is called "the set of non-members"

of \widetilde{M} .

Abstract

The aim of this paper is to introduce a new classes of supra mappings called Intuitionistic

Generalized Pre supra mapping, Intuitionistic Generalized Semi supra mapping, Intuitionistic Generalized α - supra mapping and Intuitionistic Generalized β -supra mapping. At last we studied some of their properties and investigate relationships among this concepts.

Definition 2. 2 [5] Let $X \neq \emptyset$, and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$, $\widetilde{N} = \langle x, N_1, N_2 \rangle$ are two

Intuitionistic sets respectively. Also, let{ \widetilde{M}_s ; $s \in S$ } be a collection of "Intuitionistic

sets in X'', and $\widecheck{M}_i = \langle x, M_s^{(1)}, M_s^{(2)} \rangle$, the following is valid.

- 1) $\widetilde{M} \ \widetilde{M} \subseteq \widetilde{N} \ \ \text{iff} \ \ M_1 \subseteq N_1 \ \text{and} \ \ N_2 \subseteq M_2$,
- 2) $\widetilde{M} = \widetilde{N}$ iff $\widetilde{M} \subseteq \widetilde{N}$ and $\widetilde{N} \subseteq \widetilde{M}$,
- 3) The complement of \widetilde{M} is denoted by $\overline{\widetilde{M}}$ and defined by $\overline{\widetilde{M}}$ = $\langle x, M_2, M_1 \rangle$,
- 4) $\cup \widetilde{M}_i = \langle x, \cup M_s^{(1)}, \cap M_s^{(2)} \rangle$, $\cap \widetilde{M}_i = \langle x, \cap M_s^{(1)}, \cup M_s^{(2)} \rangle$,
- 5) $\dot{\emptyset} = \langle x, \emptyset, X \rangle, \dot{X} = \langle x, X, \emptyset \rangle.$

Definition 2.3 [6] Let $X \neq \emptyset$, $w \in X$ and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$ be an Intuitionistic set

the Intuitionistic point (IP f, for briefily) "Is \dot{w} " defined by $\dot{w} = \langle x, \{w\}, \{w\}^c \rangle$ in X. Also

a Vanishing Intuitionistic point defined by Is $\ddot{w} = \langle x, \emptyset, \{w\}^c \rangle$ in X. The Is \dot{w} is said

belong in $\ \widetilde{M}$ ($\dot{w}\in M$, for brief) iff $\ w\in M_1$, also Is \ddot{p} contained in $\ \widetilde{M}$

¹ Department of Mathematics, College of Science, Tikrit University, Tikrit, Iraq

² Khaled Ibn Al Walid School , Directorate of Education Salah Eddin , Tikrit , Iraq

 $(\ddot{\mathbf{w}} \in \widetilde{\mathbf{M}}, \text{ for short}) \text{ iff } \mathbf{w} \notin \mathbf{M}_2$.

Definition 2.4 [5] Let X, Y $\neq \emptyset$, and r: (X, μ) \rightarrow (Y, γ) be a mapping.

a) If $\widetilde{N} = \langle y, N_1, N_2 \rangle$ is an Is in Y, then the inverse image of \widetilde{N} under r defined by

 $\mathbf{r}^{-1}\big(\widetilde{\mathbf{N}}\big) = \langle \mathbf{x}, \mathbf{r}^{-1}(\mathbf{N}_1), \mathbf{r}^{-1}(\mathbf{N}_2) \rangle.$

b) If $\widetilde{M} = \langle x, M_1, M_2 \rangle$ is an Is in X, then $r(\widetilde{V}) = \langle y, r(M_1), \vec{r}(M_2) \rangle$ is an Is in Y

where $\vec{r}(\widetilde{M}) = \overline{(r(\overline{\widetilde{M}_2}))}$.

Definition 2.5 [7] Let $X \neq \emptyset$. An Intuitionistic topology (ITS, for short) on X is

a collection $\,\mu\,$ of $\,$ an "Intuitionistic sets " in X satisfying :

- (1) $\dot{\emptyset}, \dot{X} \in \mu$.
- (2) μ is closed under finite intersections.
- (3) μ is closed under arbitrary unions.

Each element in μ is called "Intuitionistic open set " and denoted by "IOS"

The complement of an " Intuitionistic open set" is called "Intuitionistic closed set" denoted by "ICS" .

Definition 2.6 [7] Let (X, μ) be an ITS and let $\widetilde{M} = \langle x, M_1, M_2 \rangle \subseteq X$. The

"interior" (namely, $int(\widetilde{M})$) and the "closure"(namely, $cl(\widetilde{M})$) are defined:

 $int(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in \mu \},$

 $cl(\widetilde{M}) = \bigcap \{ \widetilde{I} : \widetilde{M} \subseteq \widetilde{I}, \overline{\widetilde{I}} \in \mu \}$. Also

 $1-\operatorname{sint}(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in \operatorname{ISOX} \},$

 $scl(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in ISCS \}.$

2- $pint(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in IPOX \},$

 $pcl(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \overline{\widetilde{J}} \in IPCS \}.$

3- $\alpha \operatorname{int}(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in I\alpha OX \},$

 $\alpha \operatorname{cl}(\widetilde{M}) = \bigcap \{ \widetilde{J} : \widetilde{M} \subseteq \widetilde{J}, \widetilde{J} \in \operatorname{I}\alpha \operatorname{CS} \}.$

 $4-\beta \operatorname{int}(\widetilde{M}) = \bigcup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in I\beta OX \},$

 $\beta \operatorname{cl}(\widetilde{M}) = \bigcap \{ \widetilde{I} : \widetilde{M} \subseteq \widetilde{I}, \widetilde{I} \in \operatorname{IBCS} \}.$

Remark 2-7.[7] This implications are valid:

$$\begin{split} & \operatorname{sint}(\widetilde{\mathbf{M}}) \subseteq \widetilde{\mathbf{M}} \text{ , } \operatorname{scl}(\widetilde{\mathbf{M}}) = \widetilde{\mathbf{M}} \text{ , } \operatorname{pint}(\widetilde{\mathbf{M}}) \subseteq \widetilde{\mathbf{M}} \text{ , } \operatorname{pcl}(\widetilde{\mathbf{M}}) = \widetilde{\mathbf{M}} \\ & \text{, } \alpha \operatorname{int}(\widetilde{\mathbf{M}}) \subseteq \widetilde{\mathbf{M}} \text{ , } \alpha \operatorname{cl}(\widetilde{\mathbf{M}}) = \widetilde{\mathbf{M}} \text{ , } \beta \operatorname{int}(\widetilde{\mathbf{M}}) \subseteq \widetilde{\mathbf{M}} \text{ and } \beta \operatorname{cl}(\widetilde{\mathbf{M}}) = \widetilde{\mathbf{M}} \text{ .} \end{split}$$

Definition 2.8. [8]

Let (X,μ) be an ITS. IS \widetilde{M} of X is said to be

- 1. ISOS if $\widetilde{M} \subseteq Icl(Iint(\widetilde{M}))$,
- 2. IPOS if $\widetilde{M} \subseteq Iint(Icl(\widetilde{M}))$,
- 3. I α OS if $\widetilde{M} \subseteq \square$ Iint(Icl(Iint(\widetilde{M}))),
- 4. I β OS if $\widetilde{M} \subseteq Icl(Iint(Icl(\widetilde{M})))$.

The family of all intuitionistic semi-open, pre-open, α -open and β -open sets of (X, μ) are

denoted by "ISOS(X)", "IPOS(X)", "I α OS(X)" and "I β OS(X)" respectively. Also the complement of all intuitionistic semi-open, pre-open , , α -open and β -open sets of (X, μ) are

denoted by "ISCS(X)", "IPCS(X)", "I α CS(X)" and "I β CS(X)" respectively.

Definition 2.9. [8]

Let (X, μ) be an ITS. An intuitionistic set \widetilde{M} of X is said to be:

- 1) Intuitionistic generalizes-open set(Igos , for short) if \forall U is ICS s.t U \subseteq \widetilde{M} then U \subseteq int(\widetilde{M}).
- 2) Intuitionistic generalizes semi-open set(Igsos , for short) if \forall U is ISCS s.t

 $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$.

- 3) Intuitionistic generalizes pre-open set (IgPos , for short) if \forall U is IPCS s.t
- $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$.
- 4) Intuitionistic generalizes $\alpha\text{-open}$ set (Ig\$\alphaos , for short) if \$\forall U\$ is I\$\alpha CS_s.t

 $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$.

5) Intuitionistic generalizes β -open set (Ig β os , for short) if \forall U is I β CS s.t

 $U \subseteq \widetilde{M}$ then $U \subseteq int(\widetilde{M})$.

Definition 2.10. [8]

A map $r:(X,\mu)\rightarrow (Y,\delta)$ is said to be:

- 1- intuitionistic continuous if the pre-image $f^{-1}(\widetilde{M})$ is IOS in X for every IOS \widetilde{M} in Y.
- 2. Intuitionistic pre continuous if the pre image $f^{-1}(\widetilde{M})$ is IPOS in X for every IOS \widetilde{M} in Y.
- 3. Intuitionistic semi continuous if the pre image $f^{-1}(\widetilde{M})$ is ISOS in X for every IOS \widetilde{M} in Y.
- 4- Intuitionistic α-continuous if the pre image $f^{-1}(\widetilde{M})$ is IαOS in X for every IOS \widetilde{M} in Y.
- 5- Intuitionistic β -continuous if the pre image $f^{-1}(\widetilde{M})$ is I β OS in X for every IOS \widetilde{M} in Y.

Now, we give this definition.

Definition 2.11.

A map $r:(X,\mu)\rightarrow (Y,\delta)$ is said to be:

- 1. IgP continuous mapping if the pre image $f^{-1}(\widetilde{M})$ is IPCS in X for every IOS \widetilde{M} in Y.
- 2. IgS continuous mapping if the pre image $f^{-1}(\widetilde{M})$ is ISCS in X for every IOS \widetilde{M} in Y.
- 3- Ig α -continuous mapping if the pre image $f^{-1}(\widetilde{\mathbb{M}})$ is I α CS in X for every IOS $\widetilde{\mathbb{M}}$ in Y .
- 4- Ig β -continuous mapping if the pre image $f^{-1}(\widetilde{M})$ is I β CS in X for every IOS \widetilde{M} in Y .

Section 2 INTUITIONISTIC GENERALIZED PRE, SEMI, β & α- of SUPRA MAPPINGS

In this section we have introduced intuitionistic this concepts: generalized pre supra mapping, Intuitionistic generalized semi supra mapping, Intuitionistic generalized β supra mappings, Intuitionistic generalized $\alpha\text{-}$ supra mapping and studied some from its properties.

Definition 2.1: A mapping $r:(X, \mu) \to (Y, \gamma)$ be an "Intuitionistic generalized pre supra mapping " ("IgPsm", for short) (resp., 'Intuitionistic generalized semi supra mapping "("IgSsm", for short), "Intuitionistic generalized α supra mapping " (Igαsm, for short), "Intuitionistic generalized β supra mapping" ('Igβsm", for short) if $r^{-1}(\widetilde{M})$ is an "IgPOS" (resp., is an "IgSOS", "IgαOS", "IgβOS")

in (X,μ) for every "IgPOS" \widetilde{M} of (Y,γ) ((resp., for every "IgSOS" \widetilde{M} , "Ig α OS" \widetilde{M} "Ig β OS" \widetilde{M} of (Y,γ)).

Proposition 2.2: Let $r: (E, \mu) \to (D, \gamma)$ and $p: (D, \gamma) \to (J, \delta)$ be IgPsm. Then

 $p\,\circ\,r{:}\,(E,\mu)\,\to\,(J,\delta)\,$ is IgPsm .

Proof: Let \widetilde{M} be IgPOS in J. Then $p^{-1}(\widetilde{M})$ is IgPOS in D, since r is IgPsm, so $r^{-1}(p^{-1}(\widetilde{M}))$ is IgPOS in E. Therefore $p \circ r$ is an IgPsm.

Proposition 2.3: Let $r: (E, \mu) \to (D, \gamma)$ and $p: (D, \gamma) \to (J, \delta)$ be $Ig\alpha sm$. Then $p \circ r: (E, \mu) \to (J, \delta)$ is IgSsm.

Proof: Let \widetilde{M} be $Ig\alpha OS$ in J. So that $p^{-1}(\widetilde{M})$ is $Ig\alpha OS$ in D, since r is $Ig\alpha Sm$ and every $Ig\alpha OS$ is IgSOS. Thus $r^{-1}(p^{-1}(\widetilde{M}))$ is IgSOS in E. Therefore $p \circ r$ is IgSSm.

Proposition 2.4: Let $r: (E, \mu) \to (D, \gamma)$ be an IgPsm and $p: (D, \gamma) \to (J, \delta)$

be IgP continuous supra mapping, then $p \circ r$: $(E,\mu) \to (J,\delta)$ is IgP continuous supra mapping.

Proof: Let \widetilde{M} be IOS in J. Then $p^{-1}(\widetilde{M})$ is IgPOS in Y. Since r is IgPsm, then $r^{-1}(p^{-1}(\widetilde{M}))$ is IgPOS in X. Therefore $p \circ r$ is IgP continuous supra mapping. **Proposition 2.5:** Let $r: (E, \mu) \to (D, \gamma)$ be an Igsm and $p: (D, \gamma) \to (J, \delta)$

be IgP continuous supra mapping , then $p\circ r$: $(E,\mu)\to (J,\delta)$ is IgP continuous supra mapping.

Proof: it's obvious.

Proposition 2.6: Let $r:(E,\mu)\to (D,\gamma)$ be an $Ig\alpha sm$ and $p:(D,\gamma)\to (J,\delta)$

be Ig α continuous mapping , then $\ p \circ r \colon (E,\mu) \to (J,\delta)$ is an IgS continuous mapping.

Proof: Let \widetilde{M} be IOS in J. Then $p^{-1}(\widetilde{M})$ is an Ig α OS in D. Since r is Ig α sm, then $r^{-1}(p^{-1}(\widetilde{M}))$ is IgSOS in E and every Ig α OS is IgSOS. Hence $p \circ r$ is IgS continuous mapping.

Proposition 2.7: Let $r: (E, \mu) \to (D, \gamma)$ be IgPsm and $p: (D, \gamma) \to (J, \delta)$

be IgP continuous mapping , then $p \circ r$: $(E, \mu) \to (J, \delta)$ is Ig β continuous mapping.

Proof: it's obvious.

Proposition 2.8: Let $r:(E,\mu)\to (D,\delta)$ be ${\rm Ig}\alpha{\rm sm}$. Then this implications are equivalent:

(i) $r^{-1}(\widetilde{M})$ is IgSOS in E for each IgSOS \widetilde{M} in D, (ii) r^{-1} $\alpha int(\widetilde{M}) \subseteq sint \ r^{-1}$ (\widetilde{M}) for every "Is \widetilde{M} " of D, (iii) $\alpha cl \ r^{-1}$ $(\widetilde{M}) \subseteq r^{-1} \ scl(\widetilde{M}) \ \forall$ "Is \widetilde{M} " of D.

Proof: (i) \Rightarrow (ii) Let \widetilde{M} be ISOS in D and $\alpha int(\widetilde{M}) \subseteq \widetilde{M}$, so $r^{-1}\alpha int(\widetilde{M}) \subseteq r^{-1}(\widetilde{M})$. Since $\alpha int(\widetilde{M})$ is I α OS in D, and every I α OS is ISOS.So IgSOS in D. Therefore r^{-1} $\alpha int(\widetilde{M})$ is IgSOS in E, and $r^{-1}\alpha int(\widetilde{M})$ is ISOS in E., since $r^{-1}\alpha int(\widetilde{M}) \subseteq r^{-1}sint(\widetilde{M})$.

 $r^{-1} \alpha int(\widetilde{M}) = \alpha int r^{-1} \alpha int(\widetilde{M}) \subseteq \alpha int r^{-1} (\widetilde{M}) \subseteq sint r^{-1} sint(\widetilde{M}) \subseteq sint r^{-1} (\widetilde{M}).$

(ii) \Rightarrow (iii) by taking complement of (ii) we get the result of (iii).

 $\begin{array}{l} \text{(iii)} \Rightarrow \text{(i) Let \widetilde{M} be IgSCS in D. Since \widetilde{M} is ISCS in D and $\operatorname{scl}(\widetilde{M}) = \widetilde{M}$. So r^{-1} ($\widetilde{M}) = \alpha \operatorname{cl} r^{-1} ($\widetilde{M}) \subseteq r^{-1} $\operatorname{scl}(\widetilde{M})$. Therefore r^{-1} ($\widetilde{M})$ is IgSCS in E . \end{array}$

Proposition 2.9: Let $r:(E,\mu)\to(D,\delta)$ be $Ig\alpha sm$. Then this implications are equivalent:

(i) $r^{-1}(\widetilde{M})$ is $\operatorname{Ig}\alpha OS$ in $E \ \forall \ \operatorname{Ig}\alpha OS \ \widetilde{M}$ in D, (ii) r^{-1} pint(\widetilde{M}) $\subseteq \beta$ int r^{-1} (\widetilde{M}) for every Is \widetilde{M} of D, (iii) pcl r^{-1} (\widetilde{M}) $\subseteq r^{-1}\beta$ cl(\widetilde{M}) $\forall \ \operatorname{IS} \widetilde{M}$ of D.

Proof: (i) \Rightarrow (ii) Let \widetilde{M} be I α OS in D and α int(\widetilde{M}) \subseteq \widetilde{M} , and $r^{-1}\alpha$ int(\widetilde{M}) \subseteq r^{-1} (\widetilde{M}). Since α int(\widetilde{M}) is I β OS in D, and every I α OS is I β OS.So Ig β OS in D. Therefore r^{-1} α int(\widetilde{M}) is Ig β OS in E, and $r^{-1}\alpha$ int(\widetilde{M}) is I β OS in E ,since $r^{-1}\alpha$ int(\widetilde{M}) \subseteq r^{-1} pint(\widetilde{M}) \subseteq r^{-1} pint(\widetilde{M}). Thus r^{-1} pint(\widetilde{M}) \subseteq pint r^{-1} (\widetilde{M}) \subseteq pint r^{-1} (\widetilde{M}).

(ii) \Rightarrow (iii) by taking complement of (ii) we get the result of (iii).

(iii) \Rightarrow (i) Let \widetilde{M} be $Ig\alpha OS$ in D, since \widetilde{M} is $I\alpha OS$ in D and $\alpha cl(\widetilde{M}) = \widetilde{M}$. Thus

 r^{-1} $(\widetilde{M}) = \alpha \operatorname{cl} r^{-1}(\widetilde{M}) \subseteq r^{-1} \alpha \operatorname{cl}(\widetilde{M})$. Therefore $r^{-1}(\widetilde{M})$ is $\operatorname{Ig} \alpha \operatorname{OS}$ in E .

Proposition 2.10: Let $r:(E,\mu)\to(D,\delta)$ be IgPsm . Then this implications are equivalent:

(i) $r^{-1}(\widetilde{M})$ is IgPOS in E \forall IgPOS \widetilde{M} in D, (ii) r^{-1} pint(\widetilde{M}) $\subseteq \beta$ int r^{-1} (\widetilde{M}) for every Is \widetilde{M} of D, (iii) pcl r^{-1} (\widetilde{M}) $\subseteq r^{-1}$ β cl(\widetilde{M}) \forall IS \widetilde{M} of D.

Proof: it's obvious.

Proposition 2.11: Let $r: (E, \mu) \to (D, \gamma)$ and $p: (D, \gamma) \to (J, \delta)$ are two $Ig\alpha sm$. Then $p \circ r: (E, \mu) \to (J, \delta)$ is IgPsm.

Proof: Let \widetilde{M} be $Ig\alpha OS$ in J. Thus $p^{-1}(\widetilde{M})$ is $Ig\alpha OS$ in D, since r is $Ig\alpha Sm$, then $r^{-1}(p^{-1}(\widetilde{M}))$ is $Ig\alpha OS$ in E. Since every $Ig\alpha OS$ is IgPOS. Thus $r^{-1}(p^{-1}(\widetilde{M}))$ is IgPOS in E. Therefore $p \circ r$ is IgPSm.

Proposition 2.12: Let $r:(E,\mu)\to(D,\gamma)$ be IgPsm and $p:(D,\gamma)\to(J,\delta)$

be Iga continuous mapping , then $\ p\circ r\colon (E,\mu)\to (J,\gamma)$ is Ig\$\beta\$ continuous mapping .

Proof: Let \widetilde{M} be $Ig\alpha OS$ in J. So that $p^{-1}(\widetilde{M})$ is $Ig\alpha OS$ in D, since every $Ig\alpha OS$ is IgPOS and r is IgPSM, then $r^{-1}(p^{-1}(\widetilde{M}))$ is IgPOS in E. Since every IgPOS is $Ig\beta OS$. Thus $r^{-1}(p^{-1}(\widetilde{M}))$ is $Ig\beta OS$ in E. Thus $p \circ r$ is $Ig\beta$ continuous mapping.

Proposition 2.13: Let $r:(E,\mu)\to(D,\gamma)$ be Igasm and

 $p:(D,\gamma)\to (J,\delta)$ be $Ig\alpha$ continuous mapping, then $p\circ r:(E,\mu)\to (J,\gamma)$ is $Ig\beta$ continuous mapping.

Proof: Let $\widetilde{\mathbb{M}}$ be I α OS in J . So that $p^{-1}(\widetilde{\mathbb{M}})$ is Ig α OS in D, since r is Ig α Sm, $r^{-1}(p^{-1}(\widetilde{\mathbb{M}}))$ is Ig α OS in E . Since every Ig α OS is Ig β OS. Thus $r^{-1}(p^{-1}(\widetilde{\mathbb{M}}))$ is Ig β OS in E . Therefore $p \circ r$ is Ig β continuous mapping .

Proposition 2.14: Let $r:(E,\mu) \to (D,\gamma)$ be IgSsm and $p:(D,\gamma) \to (J,\delta)$

be Ig continuous mapping , then $p \circ r \colon (E,\mu) \to (J,\gamma)$ is IgS continuous mapping .

Proof: Let $\widetilde{\mathbb{M}}$ be IOS in J. So that $p^{-1}(\widetilde{\mathbb{M}})$ is IgSOS in D, since r is IgSsm, then $r^{-1}(p^{-1}(\widetilde{\mathbb{M}}))$ is IgOS in E . Since every IgOS is IgSOS . Thus $r^{-1}(p^{-1}(\widetilde{\mathbb{M}}))$ is IgSOS

in E. Therefore p • r is IgS continuous mapping.

Proposition 2.15: Let $r:(E,\mu)\to(D,\gamma)$ be IgPsm and $p:(D,\gamma)\to(J,\delta)$

be Igp continuous mapping , then $p \circ r: (E, \mu) \to (J, \gamma)$ is Ig β continuous mapping .

Proof: Let \widetilde{M} be IPOS in J.Thus $p^{-1}(\widetilde{M})$ is IgPOS in D, since r is IgPsm, then $r^{-1}(p^{-1}(\widetilde{M}))$ is IgPOS in E . Since every IgPOS is Ig β OS . Hence $r^{-1}(p^{-1}(\widetilde{M}))$ is Ig β OS in E . Therefore $p \circ r$ is Ig β continuous mapping.

Proposition 2.16: Let $r: (E, \mu) \to (D, \gamma)$ be $Ig\alpha sm$ and $p: (D, \gamma) \to (J, \delta)$

be Igs continuous mapping , then $\ p \circ r \colon (E,\mu) \to (J,\gamma)$ is Ig\beta continuous mapping .

Proof: it obvious .

Proposition 2.17: Let $r: (E, \mu) \to (D, \gamma)$ be $Ig\beta sm$ and $p: (D, \gamma) \to (J, \delta)$

be $Ig\alpha$ continuous mapping , then $p \circ r: (E, \mu) \to (J, \gamma)$ is $Ig\beta$ continuous mapping .

Proof: Let \widetilde{M} be I α OS in J.Thus $p^{-1}(\widetilde{M})$ is Ig β OS in D, since r is Ig β sm, then $r^{-1}(p^{-1}(\widetilde{M}))$ is Ig β OS in E . Since every Ig α OS is Ig β OS . Hence $r^{-1}(p^{-1}(\widetilde{M}))$ is Ig β OS in E . Therefore $p \circ r$ is Ig β continuous mapping.

Proposition 2.18: Let $r:(E,\mu)\to(D,\gamma)$ be $Ig\alpha sm$ and $p:(D,\gamma)\to(J,\delta)$

be Ig continuous mapping , then $~p \circ r \colon (E,\mu) \to (J,\gamma)~$ is IgP continuous mapping .

Proof: it obvious .

Proposition 2.19: Let $r:(E,\mu)\to(D,\gamma)$ be $Ig\alpha sm$ and $p:(D,\gamma)\to(J,\delta)$

be Ig continuous mapping , then $p \circ r: (E, \mu) \to (J, \gamma)$ is IgS continuous mapping .

Proof: it obvious.

Section 3 The RELATIONS AMONG INTUITIONISTIC GENERALIZED PRE SUPRA MAPPING, INTUITIONISTIC GENERALIZED β –SUPRA MAPPING, INTUITIONISTIC GENERALIZED SEMI SUPRA MAPPING AND INTUITIONISTIC GENERALIZED α – SUPRA MAPPING .

Now, We give this important theorem .

Theorem 3.1. The implication among some types of mappings are given by the following diagram.

Proof: IgPsm ----------Igβsm

Let $r: (E, \mu) \to (D, \delta)$ be a mapping and \widetilde{M} be IPOS in D, since r is IgPsm ,

then $r^{-1}(\widetilde{M})$ is IgPOS in E . Since each IPO(Y) is IBO(Y). Hence $r^{-1}(\widetilde{M})$ is

 $Ig\beta OS$ in E for each \widetilde{M} be $I\beta OS$ in D. Therefore r is $Ig\beta sm$.

Igsm Igαsm

Let $r: (E, \mu) \to (D, \delta)$ be a mapping and \widetilde{M} be IOS in D. Since r is Igsm , then

 $r^{-1}(\widetilde{M})$ is IgOS in E . Since each $\mbox{ IO}(Y)$ is $\mbox{I}\alpha O(Y)$.So that $\,r^{-1}(G)$ is $\mbox{Ig}\alpha OS$ in E

 $\forall~\widetilde{M}~be~I\alpha OS~in~Y.$ Therefore $r~is~Ig\alpha sm$.

Igαsm IgSsm

Let $r: (E,\mu) \to (D,\delta)$ be a mapping and let \widetilde{M} be $I\alpha OS$ in D. Since r is $Ig\alpha sm$, then

 $r^{-1}(\widetilde{M})$ is $Ig\alpha OS$ in E . Since each $\ I\alpha O(Y)$ is ISO(Y) .Thus $r^{-1}(G)$ is IgSOS in E

 $\forall~\widetilde{M}$ be ISOS in Y. Therefore r is $Ig\alpha sm$.

IgSsm Igβsm

Let $r: (E, \mu) \to (D, \delta)$ be a mapping and let \widetilde{M} be ISOS in D, since r is IgSsm,

then $\,r^{-1}(\widetilde{M})$ is IgSOS in E . Since each ISO(Y) is IBO(Y) .Hence $r^{-1}(G)$ is

 $Ig\beta OS$ in E \forall \widetilde{M} be an IBOS in D. Therefore r is $Ig\beta sm$.

$Ig\alpha sm \longrightarrow IgPsm$

Let $r: (E, \mu) \to (D, \delta)$ be a mapping and let \widetilde{M} be ISOS in D, since r is IgSsm,

then $\,r^{-1}(\widetilde{M})$ is IgSOS in E . Since each ISO(Y) is IBO(Y) .Hence $r^{-1}(G)$ is

 $Ig\beta OS$ in E \forall \widetilde{M} be an IBOS in D. Therefore r is $Ig\beta sm$.

Remark 3.2 By transitivity we get this result:

The converse of the Theorem 3.1. is not true, the following examples are shown the cases.

Example 3.3. Let $E = \{a, m, n\}$ with topology $\mu = \{\dot{E}, \dot{\phi}, \tilde{S}, \tilde{R}, \tilde{K}, \tilde{U}\}$, where \tilde{S}

= $\langle e, \{w\}, \{t, z\} \rangle$, $\widetilde{R} = \langle e, \{w, z\}, \emptyset \rangle$, $\widetilde{K} = \langle e, \{w\}, \emptyset \rangle$, $\widetilde{U} = \langle e, \{w\}, \{z\} \rangle$ & $D = \{5,6,7\}$ with

topology $\delta = \{\dot{Y}, \emptyset, \widetilde{W}, \widetilde{Q}\}$, where $\widetilde{W} = \langle d, \{5\}, \{6,7\}\rangle$, $\widetilde{Q} = \langle d, \{5\}, \emptyset\rangle$. Let a mapping

 $r: (E, \mu) \to (D, \delta)$ defined by $r(\{a\}) = \{5\},\ r(\{m\}) = \{7\}, r(\{n\}) = \{6\}$. Then

1- r is Ig β sm , because \forall \widetilde{M} be Ig β OS in D, r⁻¹(\widetilde{M}) is Ig β OS in E. But r is not IgPsm, because r⁻¹({5,7}) = {a, m} is not IgPOS in E .

2- Also r is $Ig\beta sm$, because $\forall\ \widetilde{M}$ be $Ig\beta OS$ in D, $r^{-1}\bigl(\widetilde{M}\bigr)$ is $Ig\beta OS$ in E .But r is not

IgSsm, because $r^{-1}(\{6,7\}) = \{m,n\}$ is not IgSOS in E.

Example 3.4. Let $E = \{c, de\}$ with topology $\mu =$ $\{\dot{E}, \dot{\emptyset}, \widetilde{M}, \widetilde{N}\}$, where \widetilde{M} $= \langle e, \{c\}, \{d, e\} \rangle, \quad \widetilde{N} = \langle e, \{c\}, \emptyset \rangle \&$ $D = \{1,2,3\}$ with topology $\delta = \{\dot{D}, \dot{\emptyset}, \widetilde{O}, \widetilde{F}\}\$, $\widetilde{O} = \langle d, \{1\}, \{3\} \rangle$, $\widetilde{F} = \langle d, \{1\}, \emptyset \rangle$. Let a where mapping $r: (E, \mu) \rightarrow (D, \gamma)$ $r({c}) = {2}, r({d}) = {3}, r({e}) =$ defined by $\{1\}$. Thus r is IgPsm, because $\forall \widetilde{M}$ be IgPOS in D, $r^{-1}(\widetilde{M})$ is IgPOS in E. But r is not Igsm, because $r^{-1}(\{1,3\}) =$ {e, d} is not IgOS in E. **Example 3.5.** Let $E = \{d, v, p, t\}$ with topology $\mu =$ $\{\dot{E}, \dot{\emptyset}, \widetilde{B}, \widetilde{J}, \widetilde{X}, \widetilde{N}\}\$, where \widetilde{B} Ĩ $= \langle e, \{d\}, \{v, p, t\} \rangle$ $= \langle e, \emptyset, \emptyset \rangle, \widetilde{X} = \langle e, \emptyset, \{v, p, t\} \rangle, \widetilde{N} = \langle e, \{d\}, \emptyset \rangle$ $, Y = \{1,3,5\}$ with topology $\gamma = \{\dot{D}, \dot{\emptyset}, \tilde{L}, \tilde{P}\}$, where Ĩ $= \langle d, \{1\}, \{3,5\} \rangle, P = \langle d, \{1\}, \emptyset \rangle$. Let mapping $r: (E, \mu) \rightarrow (D, \gamma)$ defined by $r(\{d\}) =$ $\{1\}, r(\{v\}) = r(\{p\}) = \{3\}, r(\{t\}) = \{5\}.$ Therefore r is IgSsm, because $\forall \widetilde{M}$ be IgSOS in D, $r^{-1}(\widetilde{M})$ is IgSOS in E. But r is not Igasm, because $r^{-1}(\{3,5\}) = \{p, v, t\}$ is not IgαOS in E. **Example 3.6.** Let $E = \{i, j\}$ with topology $\mu = \{i, j\}$ $\{\dot{X}, \dot{\emptyset}, \widetilde{M}, \widetilde{N}\}$, where \widetilde{M} = $\langle e, \{i\}, \{j\} \rangle$, $\widetilde{N} = \langle e, \{i\}, \emptyset \rangle$ and $D = \{3,4\}$ with topology $\gamma = \{\dot{D}, \dot{\emptyset}, \widetilde{M}, \widetilde{W}\},\$ where $\widetilde{M} = \langle x, \emptyset, \{3\} \rangle$, $\widetilde{W} = \langle x, \emptyset, \emptyset \rangle$. Let a mapping $r: (E, \mu) \rightarrow (D, \gamma)$ defined by as $r(\{i\}) = \{3\}$, $r(\{j\}) = \{4\}$. So that r is $Ig\alpha sm$, because $\forall \widetilde{M}$ be IgaOS in D, $r^{-1}(\widetilde{M})$ is

References

- [1] Zadeh, L. A.," Fuzzy sets", Information and control, 8, 338-353, 1965.
- [2] C.Chang, Fuzzy topological space, J.Math.Anal.Appl.24(1968),182-190
- [3] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session (Sofia, June 1983 Central Sci and Tech. Library) (V. Sgurev, ed.), Blug. Academy of Sciences, Sofia, 1984.
- [4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87-96.

Ig α OS in E . But r is not Igsm, because $r^{-1}(\{4\}) = \{i\}$ is not IgOS in E .

Remark 3-7. IgPsm and IgSsm is independent notions. The following two examples shows this two cases.

Example 3.8. Let $E = \{w, r, i\}$ with topology $\mu = \{\dot{E}, \dot{\phi}, \widetilde{K}, \widetilde{S}, \widetilde{G}, \widetilde{Z}, \widetilde{I}\}$, where \widetilde{K}

 $= \langle e, \{w\}, \{r, i\} \rangle, \qquad \widetilde{S} = \langle e, \{w\}, \emptyset \rangle, \qquad \widetilde{G}$ $= \langle e, \{w, r\}, \{i\} \rangle, \ \widetilde{Z} = \langle e, \{w\}, \{r\} \rangle, \ \widetilde{I} = \langle e, \{w, r\}, \emptyset \rangle$ and

 $\begin{array}{lll} D = \{2,4,6\} & \text{with} & \text{topology} & \gamma & = \\ \left(\dot{D},\dot{\emptyset},\widetilde{T},\widetilde{H},\widetilde{C},\widetilde{F},\widetilde{R}\right), & \text{where} & \widetilde{T} & = \langle d,\{2\},\{4,6\}\rangle, \\ \widetilde{H} = \langle d,\{2\},\emptyset\rangle, & \end{array}$

 $\tilde{C} = \langle d, \{2,4\}, \{6\} \rangle, \tilde{F} = \langle d, \{2\}, \{6\} \rangle$, $\tilde{R} = \langle d, \{2,4\}, \emptyset \rangle$. Let a mapping $r : (E, \mu) \to (D, \gamma)$ defined by $r(\{w\}) = \{2\}$, $r(\{w\}) = \{4\}$, $r(\{i\}) = \{6\}$. So r is IgPsm,

because $\forall \widetilde{M}$ be an IgPOS in D, $r^{-1}(\widetilde{M})$ is IgPOS in E . But r is not IgSsm, because

 $r^{-1}(\{4,6\}) = \{w,i\} \text{ is not IgSOS in E}.$

Example 3.9. Let $E = \{o, p, u\}$ with topology $\mu = \{\dot{E}, \dot{\emptyset}, \widetilde{W}, \widetilde{R}, \widetilde{K}, \widetilde{P}, \widetilde{T}, \widetilde{H}, \widetilde{Z}\}$, where

$$\begin{split} \widetilde{\mathbb{W}} &= \langle \ e, \{o\}, \{p, u\} \rangle, \qquad \widetilde{\mathbb{R}} \\ &= \langle \ e, \{o\}, \emptyset \rangle, \ \widetilde{\mathbb{P}} = \langle \ e, \{o, p\}, \emptyset \rangle, \ \widetilde{\mathbb{T}} = \langle \ e, \emptyset, \emptyset \rangle, \end{split}$$

 $\widetilde{H} = \langle e, \emptyset, \{p, u\} \rangle, \widetilde{Z} = \langle e, \emptyset, \{p\} \rangle$ and $D = \{1,4,7\}$ with topology $\gamma = \{\dot{D}, \dot{\emptyset}, \widetilde{V}, \widetilde{G}, \widetilde{Q}\}$, where

$$\begin{split} \widetilde{V} &= \langle d, \{1\}, \{4,7\} \rangle, \quad \widetilde{G} = \langle d, \{1,4\}, \emptyset \rangle, \quad \widetilde{Q} \\ &= \langle d, \{1\}, \emptyset \rangle. \text{ Let a mapping } r: (E, \mu) \rightarrow (D, \gamma) \\ &\text{ defined } \quad \text{by} \quad r(\{o\}) = \{1\}, \quad r(\{p\}) = \{4\}, \end{split}$$

defined by $r(\{0\}) = \{1\}, r(\{p\}) = \{4\},$ $r(\{u\}) = \{7\}. \text{ So } r \text{ is IgSsm },$

because for each \widetilde{M} is IgSOS in D, $r^{-1}(\widetilde{M})$ is IgSOS in E . But r is not IgPsm,

because $r^{-1}(\{4,7\}) = \{p, u\}$ is not IgPOS in E.

- [5] D. Coker, " A note on intuitionistic sets and intuitionistic points" Turkish J. Math. 20, 1996, 343-351.
- [6] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, 88, 1997, 81-89.
- [7] D. Coker, D. An introduction to intuitionistic topological spaces, BUSEFAL 81, 51–56, 2000.
- [8] Jeon, J. K., Jun, Y. B. and Park, J. H. (2005) "Intuitionistic fuzzy alpha-continuity and Intuitionistic fuzzy pre-continuity" I.J. of math., and Math. Sci. 19, pp. 3091-3101.

حول تعميم بعض الاشكال الضعيفة للتطبيقات الفوقية في الفضاءات التبولوجية الحدسية

 2 سامر رعد یاسین 1 ، هند فاضل عباس

أقسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق 2 متوسطة خالد ابن الوليد ، مديرية تربية صلاح الدين ، تكريت ، العراق

الملخص

intuitionistic generalized Pre supra mapping, intuitionistic : في هذا البحث قدمنا صفوف جديدة من التطبيقات اسميناها generalized Semi supra mapping, intuitionistic generalized α-supra mapping , intuitionistic generalized β-supra mapping ودرسنا بعض خواصها.

وإخيرا درسنا واستقصينا العلاقات بين هذه المفاهيم.