Histomorphological structure of the RBCs and WBCs count of the blood picture in diabetic patients for both sexes

Main Article Content

Ayad H. Ibraheem
Khulood N. Rasheed

Abstract

Research have been done on patients with diabetes (both types I and II) of the reviewers of medical clinics in the provinces of Erbil and Kirkuk, which included (31) patients of both sexes (16 male, 15 female) aged (20-70 years) to study histomorphological structure of the red blood corpuscle (RBCs) and blood count of the white blood cell (WBCs) count, It was also examined the blood picture of healthy individuals from both sexes for comparison. The results showed the presence of histopathological changes in the red blood corpuscles, like hypochromic with anisopoikilocytosis (different shape and size corpuscles), normochromic crescent shape, hypochromic microcytic cells, mild hypochromic cells anisocytosis and others. The rise significantly in the average number of white blood cells, especially neutrophils and monocytes was detected, significant differences did not appear in the lymphocytes, eosinophil and basophils compared to the number of all kinds of white blood cells in healthy individuals (the control group

Article Details

How to Cite
Ayad H. Ibraheem, & Khulood N. Rasheed. (2023). Histomorphological structure of the RBCs and WBCs count of the blood picture in diabetic patients for both sexes. Tikrit Journal of Pure Science, 22(3), 7–16. https://doi.org/10.25130/tjps.v22i3.707
Section
Articles

References

1. Powers, L.W. (1989). Diagnostic hematology clinical and technical principles. The C.V. Mosby company. USA., 13–26.

2. Ganong, F.W. (1989). Review of medical physiology. 14th ed. Medical book. USA., 436–547.

3. Porter Medical Center, (2013). 115 Porter Drive, Middlebury, Vermont 05753. CBC Reference Ranges with Manual Differential Reference Range.

4. Smith, E.L.; Robert, L.H.; Lehman, I.R.; Lefkowitz, R.J.; Handler, P. and White, A. (1985). Principles of Biochemistry. Mammalian Biochemistry. 7th ed. USA., 70–98.

5. Eroschenko, V.P. (2008). diFiore's Atlas of Histology with functional correlations. 11th. ed., Lippincott Williams and Wilkins Baltimore, Philadelphia.

6. Darnell, J. ; Lodish, H. and Balltimore, D. (1990). Molecular cell Biology . Scientific American books Inc. USA., 506–530.

7. Hardisty, R.M. and Weatherall, D.J. (1974). Blood and disorders. Black well scientific publications. U.K., 684–705.

8. Sehyun, S.; Yunhee, K.; Narayanan, B. and Megha, S. (2007). Erythrocytes deformability and its variation in diabetes mellitus. Indian. J. of Exp. Biol. 45: 121–128.

9. Ballas, S.K. (1990). The pathophysiology of hemolytic anemia. Tran. Med. Rev. Vol. IV. No. 3: 336–356.

10. Pakurar, A.S. and Bigbee, J.W. (2004). Digital histology: an interactive CD atlas with review text. Wiley–Liss, New Jersey, USA.

11. Yee-Shin, L. (2003). Cells, tissue and organs of the immune system cell migration and inflammation. Ph.D. Thesis, Coll. Med.

12. Lydyard, P. and Grossi, (1998). Cells involved in the immune response. Immunol. 5th ed. Ltd. U.K., 14–30.

13. Delves, P.J. and Roitt, I.M. (2000). The immune system. N. Eng. J. Med., 343: 37–49.

14. Herrath, M.V. and Homann, D. (2003). Fundamental immunology. 5th ed. Lippin Cott Williams and Wilkins, Philadelphia.

15. Beyan, H. ; Buckley, L.R.; Yousaf, N.; Lordei, M. and Leslie, R.D. (2003). A role for innate immunity in type 1 diabetes. Diabetes. Metab. Res. Rev., 89–100.

16. Guyton, A.C. and Hall, J.E. (2009). Textbook of medical physiology. By WB Sanders company. 972–977.

17. Armstrong, D.; Abdella, N.; Salman, A. and Nichlas, M. (2009). Diabetes complications. J. med., 6: 116–122.

18. Davidson, S. (2008). Principles and practice of medicine. 18th ed. Churchill Livingston. 420–520.

19. Ganong, W.F. (2009). Review of Medical Physiology. 16th ed. Oxford. 37–97.

20. Anthony, P.F. ; Chen, B. and Sergey, A. (2009). In vitro diagnostics in diabetes. Meeting the challenge. Clin. Chem., 45(9): 1596–1601.

21. Crawford, J.M. and Cortan, R.S. (2005). The pancreas. Robbinsi pathologic basis of human disease. Philadelphia WB Saunders CO. 5th ed.

22. NHANES, (2007). Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 20: 1183–97.

23. Brown, B.A. (1976). Hematology: Principles and Procedures. 2nded. Lea and Febiger, Philadelphia.

24. Green, J.H. (2008). Basic Clinical Physiology. 3th ed. Oxford University Press. P: 30.

25. Sood, R.R. (1987). Medical laboratory technology. 2nd ed. Jaypee Brothers, New Delhi.

26. Al-Rawi, K.M. (1989). Introduction to statistics. The Ministry of Higher Education and Scientific Researches. Published in Mosul University.

27. Prisco, D.; Paniccia, R.; Coppo, M.; Vanni, D.; Rogasi, P.G.; Tramontana, M.; Abbate, R. and Gensini, G.F. (1989). Red blood cell lipid alterations in type II diabetes mellitus. Thrombo–Res., 54(6): 751–758.

28. Rabini, R.A.; Funelli, P.; Galassi, R.; Dousset, N.; Tans, M.; Ferretti, G.; Mazzanti, L.; Curatola, G.; Solera, M.L. and Valdingnie, P. (1994). Increased susceptibility to lipid oxidation of low–density lipoproteins and erythrocyte membrane from diabetic patients. Metabolism–Dec., 43(12): 1470–1474.

29. Farah, J.; Husan, A. R.; Farha, A. and Afshan, Z. W. (2013). Hyperglycemic induced variations in hematological indices in type 2 diabetics. International J. Advanced Research. 1(8): 322–334.

30. Rybicki, A.C.; Qin, J.J.; Musto, S.; Rosen, N.L.; Nagel, R.L. and Schwartz, R.S. (1993). Human erythrocyte protein 4–2 deficiency associated with hemolytic anemia and a homozygous glutamic acid–40 Fwdarw lysine substitution in the cytoplasmic domain of band 3. (Band 3. Montefiore). Blood. 81(8): 2155–2165.

31. Ishimura, Y.; Nishizawa, S.; Okuno, S.; Matsumoto, N.; Emoto, M. ; Inaba, M.; Kawagishi, T.; Kim, C. and Morii, H. (1998). Diabetes mellitus increase the severity of anemia in non-dialyzed patients with renal failure. J. Nephrol., 11:88–91.

32. Deder, I.; Kittovam, M.; Mataseje, A.; Carsky, J.; Orszaghova, Z. and Babinska, K. (2002). Effect of selected substances with antiglycative and antioxidative properties on erythrocyte deformability in diabetic patients. Scripta. Medical. (Brno) –75(5): 239–244.

33. Naglaa, K.; Iman, H.; Fahmy, A.; Oguz, B.; Nazek, A.E.E.; Magdy, M.; Mohamed, K.; Mohamed, A. and Mohamed, M.A.E. (2012). Red blood cells surface morphology in diabetic ketoacidosis. Middle East Journal of Applied Sciences. 2(1): 51–57.

34. Garnier, M.; Perret, G.; Pilardeane, P.; Vaysse, J. ; Rolland, Y.; Vzzan, B. and Vassy, R. (1988). Effect of diosmin up on red blood cell deformability and osmotic fragility: Relationship with lipid content. Methods Find. Exp. Clin. Pharmacol., 10(4): 259–262.

35. Biswas, T. ; Ghosal, J. ; Ganguly, C. and Datta, A.G. (1986). Effect of erythropoietin on the interchange of cholesterol and phospholipid between erythrocyte membrane and plasma. Biochem. Med. Metab. Biol., 35(2): 120–4.

36. Katoku, J.; Yamada, M.; Yonekubo, A.; Kauate, T. ; Kobayashi, A. and Sawa, A. (1996). Effect of the cholesterol content of a formula on the lipid compositions of plasma lipoproteins and red cell membrane in early in fancy. American J. Clin. Nutr. Dec., 64(6): 871–877.

37. Al-Humesh, M.J. (1999). Study of the change in the erythrocyte membrane composition in cerebral vascular accident patients and some causative diseases. M.Sc. Thesis, Coll. Education for Women. Univ. Tikrit. Iraq.

38. Mark, E.R.; Dean, T.W.; Ratnam, N.; Michael, W.R.; Kirsten, E.H. and Desmond, G.J. (1992). Decrease in erythrocyte glycophorin sialic acid content is associated with increased erythrocyte

aggregation in human diabetes. Clinical Science. Mar. 82(3): 309–313.

39. Patricia, F. ; Mabel, D.A.; Larisa, C. ; Raul, E.C. ; Juana, V. and Rodolfo, R. (2000). Evaluation of red blood cell aggregation in diabetes by computerized image analysis. Medicina (Buenos Aires). 60: 570–572.

40. Kowluru, R.; Bitonsky, M.; Kowluru, A.; Dembo, M.; Keaton, P. and Buican, T. (1989). Reversible sodium pump defect and swelling in the diabetes rat erythrocytes: effect of filterability and implications for microangiopathy. Proc. NaH. Acad. Sci. USA., 86: 3327–3331.

41. Farzana, Y. ; Darakhshah, J. and Haleem, M.A. (2006). Serum electrolytic diabetic patient with hypertension. J. CPSP. 16(7): 445–449.

42. Raman, P.G. (2000). Diabetes Mellitus. 2nd ed. AITBS. Publisher and Distributors, India.

43. Bosman, D.R.; Winkler, A.S.; Marsden, J.T.; Mecdougall, I.C. and Watkins, P.J.(2001). Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care. 24(4).

44. Agency For Healthcare Research And Quality, (2009). Comparative effectiveness and safety of oral diabetes medication for adults with types diabetes accessed.

45. Dacie, J.V. (1991). The hemolytic anemia: the hereditary hemolytic anemia. Vol. 1. 3rd ed. Edinburgh. Churchill Livingstone.

46. Marius, C.N.; Stefania, C.; Elena, T.A.; Denisa, M.M.; Manuela, V.B.; Denisa, T. and Rucsandra, D.M. (2015). The prevalence of the red cell morphology changes in patients with type 2 diabetes mellitus. Rom. J. Morphol. Embryol. 56(1):183–189.

47. Chung, F.M.; Shin, S.J.; Tsai, J.C.R.; Lee, Y.J. and Chang, D.M. (2005). Peripheral total and differential leukocyte count in diabetic nephropathy. Diabetes Care. 28:1710–1717.

48. Targher, G.; Seidell, J.C.; Tonoli, M. ; Muggeo, M. De Sandre, G. and Cigolini, M. (2009). The white blood cell count: its relationship to plasma insulin and other cardiovascular risk factors in healthy male individuals. J. Int. Med., 239: 435–441.

49. Gallacher, S.J.; Thomson, G.; Fraser, W.D.; Fisher, B.M.; Gemmell, C.G. and MacCuish, A.C. (1995). Neutrophil bactericidal function in diabetes mellitus: evidence for association with blood glucose control. Diab. Med., 12: 916–920.

50. Ohshita, K. (2003). Elevated white blood cell count in subject with impaired glucose tolerance diabetic care. 30: 2152–2156.

51. Emingil, G.; Darcan, U.; Keskinolu, A.; Kutu, K.N. and Alilla, G. (2001). Localized aggressive periodontitis in a patient with type I diabetes mellitus. J. Periodontol., 72: 1265–1270.

52. Esmann, V. (1983). Neutrophil granulocyte function in diabetic patients. J. Clin. Biochem., 21: 561–566.

53. Przybyle, L. (1988). Disturbances of neutrophil granulocyte function in diabetics part II mechanisms

responsible for impaired neutrophil granulocyte function. 11: 255–256.

54. Hatanaka, E.; Monteagudo, P. T.; Marrocos, M. and Campa, A. (2006). Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin. Exp. Immunol., 146(3): 443–447.

55. Alexiewicz, J.M.; Kumar, D.; Smogorzewski, M.; Klin, M. and Massry, S.G. (1995). Polymorphounclear leucocytes in non-insulin dependent diabetes mellitus: abnormalities in metabolism and function. Ann. Intern. Med., 123: 919–924.

56. Tkac, I.; Tkacava, R.; Takac and Lazur, J. (1992). Hematologic change in type 2 diabetic patients with various localizations of peripheral vascular disease. Vasa., 21: 360–364.

57. Kelly, M.K.; Brown, J.K. and Thony, Y.H. (1985). Neutrophil and monocyte adherence in

diabetes mellitus, alcoholic cirrhosis, uraemia and elderly patients. Int. Arch. Allergy. Appl. Immunol., 78: 132–138.

58. Shwe, S. ; Lei, L.W.; Thinn, Y.A.; Theingi, M.M. and Kay, K.S. (2015). Approach to the Patients with Monocytosis. IOSR. J. of Dental and Med. Sci. 14:81–86.

59. Kumar, A.; Kaundal, R.K.; Lyer, S. and Clark, S. (2005). Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Sharma Life Sciences. 80: 1236–1244.

60. Wei, X.U.; Hai-feng, W.U.; Shao-gang, M.A.; Feng, B; Wen, H.U.; Yue, J. and Hong, L. (2013). Correlation between peripheral white blood cell counts and hyperglycemic emergencies. Int. J. Med. Sci., 10(6): 758–765.