

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

Partial b-Rectangular Metric Space with Some Results

Noor Riyadh Adeeb

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq https://doi.org/10.25130/tjps.v27i2.73

ARTICLE INFO.

Article history:

-Received: 2 / 9 / 2021 -Accepted: 26 / 10 / 2021 -Available online: / / 2022

Keywords: b-rectangular metric space, contraction mapping, fixed point, partial b-metric space, partial b-rectangular metric space.

Corresponding Author:

Name: Noor Riyadh Adeeb

E-mail:

noorra_math@csw.uobaghdad.edu.iq

Tel:

1. Introduction

The definition of metric space was presented by Freshet in 1906 [1]. Many authors after Freshet gave several generalization of metric space. In [2], Shukla S. gave the concept of partial b-metric space. The notion of b-rectangular metric space was given in [3]. Banach in 1922 introduced the famous and important type of fixed point which is Banach contraction principle [4]. In 1969, Kannan gave another type of fixed point which is Kannan fixed point theorem [5]. Many fixed point theorems were stated and proved in generalization metric space [6-14].

Definition 1[2]

Let *S* be a non-empty set. A function $L:\times S \to [0, \infty)$ is a partial b-metric on *S* if $\forall a, b$ and *c* in *S*:

(L1): L(a, a) = L(a, b) = L(b, b) iff a = b.

 $(L2): L(a,a) \le L(a,b).$

(L3): L(a,b) = L(b,a).

(L4): $L(a,b) \le k[L(a,c) + L(c,b)] - L(c,c)$, for some $k \in \mathbb{R}$, $k \ge 1$.

Then the pair (S, L) is said to be partial b-metric space, where $k \in \mathbb{R}, k \ge 1$ is the coefficient number of (S, L, k).

Definition 2[3]

Let *S* be a non-empty set. A function $N: S \times S \rightarrow [0, \infty)$ is a b-rectangular metric on *S* if $\forall a, b, c$ and *d* in *S*:

(N1): N(a,b) = 0 iff a = b.

(N2): N(a,b) = N(b,a).

ABSTRACT

A new generalization of metric space called partial b-rectangular metric space is introduced. Also, the relation between this generalization and the other generalizations for example a b-rectangular metric space is given. Moreover, we have proved Banach theorem and Kannan theorem of fixed Point in partial b-rectangular metric space. Furthermore, some definitions and results dealing with partial b-rectangular metric space are discussed.

(N3): $N(a,b) \le k[N(a,c) + N(c,d) + N(d,b)]$, for some $k \in \mathbb{R}$, k > 1.

Then the pair (S, N) is said to be b-rectangular metric space, where $k \in \mathbb{R}$, $k \ge 1$ is the coefficient number of (S, N, k).

2. Partial b-Rectangular Metric Space

In this section we generalize the definitions of partial b-metric space and b-rectangular metric space, we named partial b-rectangular metric space.

Definition 3.

Let *S* be a non-empty set. A function $p_{br}: S \times S \rightarrow [0, \infty)$ is a partial b-rectangular metric on *S* if satisfies the following conditions: for a, b in *S* and for $c \neq d$ in $S - \{a, b\}$:

(PBR1): $p_{br}(a, a) = p_{br}(a, b) = p_{br}(b, b)$ if and only if a = b.

(PBR2): $p_{br}(a,a) \leq p_{br}(a,b)$.

(PBR3): $p_{br}(a, b) = p_{br}(b, a)$.

(PBR4): $p_{br}(a,b) \le k[p_{br}(a,c) + p_{br}(c,d) +$

 $p_{br}(d,b)$] $-p_{br}(c,c)-p_{br}(d,d)$ for some $k \in \mathbb{R}, k \ge 1$.

Then the pair (S, p_{br}) is said to be partial brectangular metric space, where $k \in \mathbb{R}$, $k \ge 1$ is the coefficient number of (S, p_{br}, k) .

We explain that by some examples and remarks.

Example 4.

Let $S = \{0, \frac{1}{4}, \frac{1}{2}, 1\}$. Define $p_{br}: S \times S \to (0, \infty)$ as $p_{br}(a, b) = \alpha + |a - b|$, α is a real number greater

than zero. Then (S, p_{br}) is a partial b-rectangular metric space.

Proof: We see that the properties (PBR1), (PBR2) and (PBR3) are verified for all $a, b \in S$.

To proof (PBR4) consider:

$$p_{br}(a,b) = \alpha + |a - b|$$

$$= \alpha + |a-c+c-d+d-b| - 2\alpha + 2\alpha$$

$$\leq \alpha + |a-c| + \alpha + |c-d| + \alpha + |d-b| - \alpha - \alpha$$

$$\leq k[(\alpha + |a - c|) + (\alpha + |c - d|) + (\alpha +$$

$$|d-b|$$
) $-\alpha - \alpha$ (for some $k \in \mathbb{R}, k \ge 1$)

$$= k[p_{br}(a,c) + p_{br}(c,d) + p_{br}(d,b)] - p_{br}(c,c) - p_{br}(d,d)$$

$$\forall a, b \in S \text{ and for } c \neq d \in S - \{a, b\}$$

Hence (S, p_{br}) is a partial b-rectangular metric space.

Example 5.

Let $A = \{0,1,2,3,4,5\}, A^2 = S$. Define $p_{br}: S \times S \to S$ $[0, \infty)$ as follows:

$$p_{br}(a,b) = 2 + (|a_1 - a_2| + |b_1 - b_2|),$$
 for each $a = (a_1, b_1), b = (a_2, b_2)$ in S. Then (S, p_{br}) is a partial b-rectangular metric space.

Proof: We notice that the properties (PBR1), (PBR2) and (PBR3) are verified for all $a, b \in S$.

To proof (PBR4) consider:

$$p_{br}(a,b) = 2 + (|a_1 - a_2| + |b_1 - b_2|)$$

$$\leq 2 + (|a_1 - a_3| + |b_1 - b_3|) + 2 + (|a_3 - a_4| + |b_3|) + 2 + (|a_3 - a_4| + |$$

$$|b_3 - b_4| + 2 + (|a_4 - a_2| + |b_4 - b_2|) - 2 - 2$$

 $\leq k \left[2 + (|a_1 - a_3| + |b_1 - b_3|) \right]$

$$\leq \kappa \left[2 + (|a_1 - a_3| + |b_1 - b_3) \right]$$

$$+2 + (|a_3 - a_4| + |b_3 - b_4|)$$

 $+2 + (|a_4 - a_2| + |b_4 - b_2|)] - 2 - 2$

$$= k[p_{br}(a,c) + p_{br}(c,d) + p_{br}(d,b)] - p_{br}(c,c) - p_{br}(d,d)$$

 $\forall a, b \in S$ and for $c \neq d \in S - \{a, b\}$, for some $k \in S$ $\mathbb{R}, k \geq 1$

Hence (S, p_{br}) is a partial b-rectangular metric space.

Remarks 6.

- 1. If $a, b \in S$ such that $p_{br}(a, b) = 0$ we have a =b. The opposite is not necessary true.
- 2. b-rectangular metric space is a partial brectangular metric space with the self-distance between two points equals zero but the convers not necessary true.

Note 7. In (Examples 4, 5) we have $p_{hr}(a,a) \neq$ $0, \forall a = b \text{ in } S$. So the opposite of remark 1 not true and (S, p_{br}) is not a b-rectangular metric space.

3. Fixed Point in Partial b-Rectangular Metric **Space**

In this section we prove Banach contraction principle theorem and Kannan fixed point theorem in a partial b-rectangular metric space. In order to obtain that we need to give some definitions and information in a partial b-rectangular metric space.

Definition 8.

Let $\langle a_n \rangle$ be a sequence in (S, p_{br}) , we say that $< a_n >$ converges to $a \in S$, if $\forall \ \varepsilon > 0$, $\exists \ n_0(\varepsilon) \in \mathbb{N}$ such that $|p_{br}(a_n, a) - p_{br}(a, a)| < \varepsilon$, $\forall n > n_0(\varepsilon)$.

Definition 9.

Let $\langle a_n \rangle$ be a sequence in (S, p_{br}) , we say that $< a_n >$ Cauchy sequence, if $\forall \ \varepsilon > 0, \ \exists \ n_0(\varepsilon) \in \mathbb{N}$ such that $p_{br}(a_n, a_m) < \varepsilon$, $\forall n, m > n_0(\varepsilon)$, in other words $\lim_{n,m\to\infty} p_{br}(a_n,a_m)$ exists and finite.

Definition 10.

A partial b-rectangular metric space (S, p_{br}) is said to be complete if every Cauchy sequence in S is convergent, in other words $\lim_{n,m\to\infty} p_{br}(a_n,a_m) =$ $\lim_{n\to\infty} p_{br}(a_n,a) = p_{br}(a,a).$

Example 11.

Let
$$A = \left\{ \frac{1}{n+1} : n \in \mathbb{N} \right\}, B = \{0,1\}$$
 and $A \cup B = S$,

$$\beta \ge 0$$
. Define $p_{br}: S \times S \to [0, \infty)$ as follows:

$$p_{br}(a,b) \qquad if \ a = b \ or \ a,b \in B$$

$$= \begin{cases} \beta + \frac{1}{n+1}, & if \ a \in A \ and \ b \in B \ or \ b \in A \ and \ a \in B \end{cases}$$

$$\beta + \frac{1}{2}, \qquad otherwise$$

We see that the properties (PBR1), (PBR2) and (PBR3) are verified for all $a, b \in S$.

To proof (PBR4) we have:

$$p_{br}(a,b) = \beta + \frac{1}{n+1} \le k \left[\left(\beta + \frac{1}{n+1} \right) + \frac{1}{2} + \frac{1}{n+1} \right] + \frac{1}{n+1} + \frac{1}{n+1} = 0$$

$$\begin{aligned} & 2\beta - 2\beta \\ & = k \left[\left(\beta + \frac{1}{n+1} \right) + \left(\beta + \frac{1}{2} \right) + \left(\beta + \frac{1}{n+1} \right) \right] - \beta - \beta \\ & = k \left[p_{br}(a,c) + p_{br}(c,d) + p_{br}(d,b) \right] - p_{br}(c,c) - \zeta \end{aligned}$$

$$= k[p_{br}(a,c) + p_{br}(c,d) + p_{br}(d,b)] - p_{br}(c,c) - p_{br}(d,d)$$

 $\forall a, b \in S$ and for $c \neq d \in S - \{a, b\}$, for some $k \in S$ \mathbb{R} , $k \geq 1$.

So, (S, p_{br}) is a partial b-rectangular metric space.

In (S, p_{hr}) the convergent sequence may have more than one convergence point and may not be Cauchy

$$a_n = \begin{cases} \frac{1}{n+1} & \text{, } n \text{ is odd} \\ 1 & \text{, } n \text{ is even} \end{cases}$$

$$\lim_{n\to\infty}p_{br}(a_n,0)=$$

$$\begin{cases} \lim_{n\to\infty} p_{br}\left(\frac{1}{n+1},0\right) & \text{, } n \text{ is odd} \\ \lim_{n\to\infty} p_{br}(1,0) & \text{, } n \text{ is even} \end{cases} = \begin{cases} \beta \\ \beta \end{cases}$$

$$\lim_{n\to\infty} p_{br}(a_n, 1) =$$

$$\begin{cases}
\lim_{n\to\infty} p_{br}(a_n, 1) = \\
\lim_{n\to\infty} p_{br}\left(\frac{1}{n+1}, 1\right) &, n \text{ is odd} \\
= \begin{cases}
\beta \\
0
\end{cases}$$

 $\lim_{n\to\infty} p_{br}(1,1)$, n is even So, $\langle a_n \rangle$ convergence to two different points 0 and 1.

Also,
$$\lim_{n\to\infty} p_{br}(a_{2n}, a_{2n+2}) = \beta + \frac{1}{2}$$
 and

$$\lim_{n\to\infty} p_{br}(a_{2n},1) = \beta$$

It means the limit does not exist, so $\langle a_n \rangle$ is not Cauchy sequence.

Definition 12.

Let $T: (S, p_{br}) \to (S, p_{br})$ be a mapping, we say that $a_0 \in S$ is a fixed point of T if $T(a_0) = a_0, \forall a_0 \in S$.

Definition 13.

Let T: $(S, p_{br}) \rightarrow (S, p_{br})$ be a mapping, then T is called a contraction mapping if $p_{hr}(T(a), T(b)) \le$ $\theta p_{hr}(a, b)$, where $0 \le \theta < 1, \forall a, b \in S$.

In the following theorem we prove Banach contraction principle (Banach type of fixed Point) in partial b-rectangular metric space

Theorem 14. (Banach Type of fixed Point)

Let (S, p_{br}) be a complete partial b-rectangular metric space with a real number k > 1, let

TJPS

T: $(S, p_{br}) \rightarrow (S, p_{br})$ be a mapping such that $p_{br}(T(a), T(b)) \leq \theta p_{br}(a, b)$, where $0 \leq \theta < \frac{1}{k}$, $\forall a, b \in S$, then there exists a unique fixed point $a_0 \in S$ of T and the self-distance between two points equals zero.

Proof: Firstly to prove if T has a fixed point $a_0 \in S$, then a_0 is unique. We shall prove that if $a_0 \in S$ is a fixed point of T, i.e. $T(a_0) = a_0$, then the self-distance between two points equals zero.

Suppose that $a_0 \in S$ is a fixed point of T, i.e. $T(a_0) = a_0$

Consider
$$p_{br}(a_0, a_0) = p_{br}(T(a_0), T(a_0)) \le \theta p_{br}(a_0, a_0) < \frac{1}{k} p_{br}(a_0, a_0) < p_{br}(a_0, a_0)$$

Which is a contradiction. Thus, we must have the self-distance between two points equals zero.

Now, to prove a_0 is a unique, suppose there exist two fixed points of T in S say a_0 and b_0 such that $a_0 \neq b_0$, i.e. $T(a_0) = a_0 \neq b_0 = T(b_0)$

Consider
$$p_{br}(a_0, b_0) = p_{br}(T(a_0), T(b_0)) \le \theta p_{br}(a_0, b_0) < \frac{1}{k} p_{br}(a_0, b_0) < p_{br}(a_0, b_0)$$

Which is a contradiction. Thus, we must have the self-distance between two points equals zero, i.e. $a_0 = b_0$.

Next, to prove the existence of fixed point, let $\langle a_n \rangle$ be a sequence in S such that $T(a_n) = a_{n+1}$, $n = 0,1,2 \cdots$, if $a_{n+1} = a_n$ then T has a fixed point which is a_n .

Assume that $a_{n+1} \neq a_n$, $n = 0,1,2,\cdots$, put $p_{brn} = p_{br}(a_n, a_{n+1})$

Consider

$$p_{brn} = p_{br}(a_n, a_{n+1}) = p_{br}(T(a_{n-1}), T(a_n)) \le \theta p_{br}(a_{n-1}, a_n) = \theta p_{brn-1}$$

 $\theta p_{brn-1} = \theta p_{br}(a_{n-1}, a_n) =$

$$\theta p_{br}(T(a_{n-2}), T(a_{n-1})) \leq \theta^2 p_{br}(a_{n-2}, a_{n-1}) = \theta^2 p_{brn-2}$$

After repetition of this process we get:

$$p_{brn} \le \theta p_{brn-1} \le \theta^2 p_{brn-2} \le \dots \le \theta^n p_{br0}$$
 i.e.

 $p_{brn} \leq \theta^{n} p_{br0}$

Again put $p_{brn}^* = p_{br}(a_n, a_{n+2})$

Consider

$$p_{brn}^* = p_{br}(a_n, a_{n+2}) = p_{br}(T(a_{n-1}), T(a_{n+1})) \le$$

 $\theta p_{br}(a_{n-1}, a_{n+1}) = \theta p_{brn-1}^*$

After repetition of this process we get:

$$p_{brn}^* \le \theta p_{brn-1}^* \le \theta^2 p_{brn-2}^* \le \dots \le \theta^n p_{br0}^*$$
 i.e.
$$p_{brn}^* \le \theta^n p_{br0}^*$$

To prove that $\langle a_n \rangle$ is a Cauchy sequence considered $p_{br}(a_n, a_m), m = n + q, q > 0$, we have two cases:

Case 1: If q = 2p + 1 (odd) we have:

$$\begin{split} & p_{br}\big(a_{\text{n}}\,,a_{n+2p+1}\,\big) \leq k\big[p_{br}(a_{\text{n}}\,,a_{n+1}) + \\ & p_{br}(a_{\text{n}+1}\,,a_{n+2}) + p_{br}\big(a_{\text{n}+2}\,,a_{n+2p+1}\big)\big] - \\ & p_{br}(a_{\text{n}+1}\,,a_{n+1}) \end{split}$$

 $-p_{br}(a_{n+2}, a_{n+2})$

$$\leq kp_{br}(a_n, a_{n+1}) + kp_{br}(a_{n+1}, a_{n+2}) + k^2m(a_n, a_{n+1}) + k^2m(a_n, a_{n+1$$

$$k^2 p_{br}(a_{n+2}, a_{n+3}) + k^2 p_{br}(a_{n+3}, a_{n+4}) + k^3 p_{br}(a_{n+4}, a_{n+5}) + k^3 p_{br}(a_{n+5}, a_{n+6}) + \dots + k^p p_{br}(a_{n+2p}, a_{n+2p+1})$$

$$\begin{split} &-p_{br}(a_{\mathsf{n}+1}\,,a_{n+1})-p_{br}(a_{\mathsf{n}+2}\,,a_{n+2})-\\ &p_{br}(a_{\mathsf{n}+3}\,,a_{n+3})-p_{br}(a_{\mathsf{n}+4}\,,a_{n+4})\\ &-p_{br}(a_{\mathsf{n}+5}\,,a_{n+5})-p_{br}(a_{\mathsf{n}+6}\,,a_{n+6})-\cdots-\\ &p_{br}(a_{\mathsf{n}+2p}\,,a_{n+2p})\\ &\leq kp_{br}(a_{\mathsf{n}}\,,a_{n+1})+kp_{br}(a_{\mathsf{n}+1}\,,a_{n+2})+\\ &k^2p_{br}(a_{\mathsf{n}+2}\,,a_{n+3})+k^2p_{br}(a_{\mathsf{n}+3}\,,a_{n+4})\\ &+k^3p_{br}(a_{\mathsf{n}+4}\,,a_{n+5})+k^3p_{br}(a_{\mathsf{n}+5}\,,a_{n+6})+\cdots+\\ &k^pp_{br}(a_{\mathsf{n}+2p}\,,a_{n+2p+1}) \end{split}$$

Since $p_{brn}^* = p_{br}(a_n, a_{n+2})$, we have:

 $p_{br}(a_n, a_{n+2p+1}) = kp_{brn} + kp_{brn+1} + k^2p_{brn+2} + k^2p_{brn+3} + k^3p_{brn+4} + k^3p_{brn+5} + \dots + k^pp_{brn+2p}$ Since $p_{brn} \le \theta^n p_{br0}$, we have:

 $p_{br}(a_n, a_{n+2p+1}) \le k\theta^n p_{br0} + k\theta^{n+1} p_{br0} + k^2\theta^{n+2} p_{br0} + k^2\theta^{n+3} p_{br0} + k^3\theta^{n+4} p_{br0} + k^3\theta^{n+5} p_{br0}$

 $\begin{aligned} k^{3}\theta^{n+5}p_{br0} + k^{3}\theta^{n+5}p_{br0} + k^{3}\theta^{n+5}p_{br0} \\ + \cdots + k^{p}\theta^{n+2p-1}p_{br0} + k^{p}\theta^{n+2p}p_{br0} \\ &= \left[(1 + k\theta^{2} + k^{2}\theta^{4} + \cdots + k^{p-1}\theta^{2p}) \right. \\ &+ \theta(1 + k\theta^{2} + k^{2}\theta^{4} + \cdots \\ &+ k^{p-1}\theta^{2p-2}) \right] k\theta^{n}p_{br0} \end{aligned}$

 $\leq \frac{k\theta^n p_{br0}(1+\theta)}{1-k\theta^2} \quad \left(\text{sice } k > 1 \text{ and } 0 \leq \theta < \frac{1}{k} \text{ so } k\theta^2 < 1\right)$

Case 2: If q = 2p (even), by using the same way as the proof of the first case with $\theta^n p_{br0}^* \ge p_{brn}^*$ we get:

$$p_{br}(a_n, a_{n+2p+1}) \le \frac{k\theta^n p_{br0}(1+\theta) + \theta^{n-2} p_{br0}^*}{1 - k\theta^2}$$

From case 1 and case 2 we have $p_{br}(a_n, a_m) = 0$, as $n, m \to \infty$, m = n + q, q > 0

Hence $\langle a_n \rangle$ is a Cauchy sequence in (S, p_{br}) .

From completeness property of (S, p_{br}) we have $a_0 \in S$ such that $a_n \to a_0$ as $n \to \infty$

To prove $a_0 \in S$ is a fixed point of T

Consider, T satisfies $p_{br}(T(a), T(b)) \le \theta p_{br}(a, b)$ we have:

$$\begin{split} &p_{br}(a_0\,,T(a_0)) \leq k[p_{br}(a_0\,,a_n) + p_{br}(a_n\,,a_{n+1}) + \\ &p_{br}(a_{n+1}\,,T(a_0))] - p_{br}(a_n\,,a_n) - p_{br}(a_{n+1}\,,a_{n+1}) \\ \leq & \end{split}$$

 $-k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) + p_{br}(T(a_n), T(a_0))]$

 $\leq k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) + \theta p_{br}(a_n, a_0)]$ Since $p_{br}(a_n, a_m) = 0, < a_n >$ converges to $a_0 \in S$ we obtain:

 $p_{br}(a_0, T(a_0)) = 0 \implies a_0 = T(a_0)$

Hence T has a fixed point which is $a_0 \in S$.

In the following theorem we prove Kannan fixed point theorem in partial b-rectangular metric space

Theorem 15. (Kannan Type of fixed Point)

Let (S, p_{br}) be a complete partial b-rectangular metric space with a real number $k \geq 1$, let $T: (S, p_{br}) \to (S, p_{br})$ be a mapping such that $p_{br}(T(a), T(b)) \leq \theta[p_{br}(a, T(a)) +$

 $p_{br}(b,T(b))$] where $0 \le \theta < \frac{1}{2k}$, $\forall a,b \in S$, then there exists a unique fixed point $a_0 \in S$ of T and the self-distance between two points equals zero.

Proof: Firstly to prove if T has a fixed point $a_0 \in S$, then a_0 is unique. We shall prove that if $a_0 \in S$ is a fixed point of T, i.e. $T(a_0) = a_0$, then the self-distance between two points equals zero.

Suppose that $a_0 \in S$ is a fixed point of T, i.e. $T(a_0) = a_0$

TIPS

Consider $p_{br}(a_0, a_0) = p_{br}(T(a_0), T(a_0))$ $\leq \theta[p_{br}(a_0, T(a_0)) + p_{br}(a_0, T(a_0))]$ $=2\theta p_{br}(a_0, a_0) < \frac{1}{k} p_{br}(a_0, a_0) < p_{br}(a_0, a_0)$ Which is a contradiction. Thus, we must have the

self-distance between two points equals zero.

Now, to prove a_0 is a unique, suppose there exist two fixed points of T in S say a_0 and b_0 such that $a_0 \neq b_0$, i.e. $T(a_0) = a_0 \neq b_0 = T(b_0)$, then we have the self-distance between two points equals zero.

Consider $p_{br}(a_0, b_0) = p_{br}(T(a_0), T(b_0))$ $\leq \theta[p_{br}(a_0, T(a_0)) + p_{br}(b_0, T(b_0))]$ $= \theta[p_{br}(a_0, a_0) + p_{br}(b_0, b_0)] = 0$

Which is contradiction. So, we must have the selfdistance between two points equals zero, i.e. $a_0 = b_0$. Next, to prove the existence of fixed point, let $< a_n >$ be a sequence in S such that $T(a_n) = a_{n+1}$, $n = 0,1,2 \dots$, if $a_{n+1} = a_n$ then T has a fixed point which is a_n .

Assume that $a_{n+1} \neq a_n$, $n = 0,1,2,\dots$, put $p_{brn} =$ $p_{br}(a_n, a_{n+1})$

Consider $p_{brn} = p_{br}(a_n, a_{n+1})$

 $= p_{br}(T(a_{n-1}), T(a_n))$

 $\leq \theta[p_{br}(a_{n-1}, T(a_{n-1})) + p_{br}(a_n, T(a_n))]$

 $= \theta[p_{br}(a_{n-1}, a_n) + p_{br}(a_n, a_{n+1})]$

 $= \theta[p_{brn-1} + p_{brn}]$

After repetition of this process we get:

After repetition of this process we get:
$$p_{brn} \le \left(\frac{\theta k}{1-\theta k}\right)^n p_{br0} \left(\text{sice } k \ge 1 \text{ and } 0 \le \theta < \frac{1}{2k} \text{ so } \theta k < 1\right)$$

 $\lim_{n\to\infty} p_{brn} = \lim_{n\to\infty} p_{br}(a_n, a_{n+1}) = 0$, it Thus, means for any $\varepsilon > 0$ we can find $n_0(\varepsilon) \in \mathbb{N}$ such that $p_{brn} < \frac{\varepsilon}{2}$, $\forall n > n_0(\varepsilon)$.

References

[1] Fr'echet M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del circolo Matematico di Palermo. 22: 1-74.

[2] Shukla S. (2014). Partial b-metric space and fixed point theorems. Mediterr. J. Math. 11: 703-711.

[3] Roshan J, Parvaneh V, Kadelburg Z and Hussain N. (2016). New fixed point results in b-rectangular metric spaces*. Nonlinear Analysis. Modeling and Control. 21(5): 614-634.

[4] Banach S. (1922). Sur les operations dans les ensembles abstraction et leur application aux equations integrals. Fund Math. 2: 133-181.

[5] Kannan R. (1969). Some results on fixed points ||. Am. Math. Mon. 76:405-408.

[6] Pacurar M. (2010). A fixed point result for Φcontractions on b-metric spaces without the boundedness assumption. Fasc. Math. 43: 127-137.

[7] Altun I, Sola F and Simsek H. (2010). Generalized contractions on partial metric space. Topology and its Applications. 157: 2778-2785.

[8] Anuradha G and Pragati G. (2015). Quasi-Partial b- metric space and some related fixed point theorems. Fixed Point Theory and Application. 18: 2-12.

To prove that $\langle a_n \rangle$ is a Cauchy sequence in S Consider $p_{br}(a_{n}, a_{m}) = p_{br}(T(a_{n-1}), T(a_{m-1}))$ $\leq \theta[p_{br}(a_{n-1}, T(a_{n-1})) + p_{br}(a_{m-1}, T(a_{m-1}))]$ $= \theta[p_{br}(a_{n-1}, a_n) + p_{br}(a_{m-1}, a_m)]$ $=\theta[p_{brn-1}+p_{brm-1}]$ Since $p_{brn} = p_{br}(a_n, a_{n+1}) < \frac{\varepsilon}{2}, \forall n > n_0(\varepsilon)$, so $p_{brm} = p_{br}(a_{\mathrm{m}}, a_{\mathrm{m+1}}) < \frac{\varepsilon}{2}, \forall m > n_0(\varepsilon)$ Therefore, $p_{br}(a_n, a_m) < \varepsilon, \forall n, m > n_0(\varepsilon)$ Hence $\langle a_n \rangle$ is a Cauchy sequence in (S, p_{br}) and $\lim_{n,m\to\infty} p_{br}(a_n,a_m) = 0$ From completeness property of (S, p_{br}) we have $a_0 \in S$ such that $a_n \to a_0$ as $n \to \infty$ $0 = \lim_{n,m\to\infty} p_{br}(a_n, a_m) = \lim_{n\to\infty} p_{br}(a_n, a_0) =$ $p_{br}(a_0,a_0).$ To prove $a_0 \in S$ is a fixed point of T $p_{br}(a_0, T(a_0)) \le k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) + p_{br}(a_n, a_{n+1})]$ $p_{br}(a_{n+1}, T(a_0))] - p_{br}(a_n, a_n) - p_{br}(a_{n+1}, a_{n+1})$ $k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) +$ $p_{br}(T(a_n), T(a_0))$ $k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) +$ $\theta \left[p_{br} \! \left(a_n \, , \mathsf{T}(a_{\mathrm{n}}) \right) + p_{br} \! \left(a_0 \, , \mathsf{T}(a_0) \right) \right] \right]$ $k[p_{br}(a_0, a_n) + p_{br}(a_n, a_{n+1}) +$ $\theta \left[p_{br}(a_n, a_{n+1}) + p_{br}(a_0, T(a_0)) \right]$ Since $\lim_{n\to\infty} p_{br}(a_n, a_0) = 0$ and $\lim p_{brn} =$ $\lim_{n\to\infty} p_{br}(a_n, a_{n+1}) = 0$, we obtain $p_{br}(a_0, T(a_0)) = 0 \Longrightarrow a_0 = T(a_0)$ Hence T has a fixed point which is $a_0 \in S$.

[9] Singh D, Ghauhan V and Wangkeeree R. (2017). Geraghty type generalized F-Continuous and related application in partial metric space. Int J Anal. 1-14.

[10] Mitrovic Z.D., Radenovic S, (2017). A common fixed point theorem of Jungck in rectangular b-metric space. Acta Math Hungarica. 153(2): 401-407.

[11] Parvaneh V and Kadelburg Z. (2018). Extended Partial b-metric space and some fixed point results. Faculty Sci Math. 32(8): 2837-2850.

[12] Yaowaluck K. (2018). Contraction on some fixed point theorem in $b_{\nu}(s)$ – metric space. WCE London UK. 1: 1-6.

[13] Deepak S, Varsha C, Poom K and Vishal J. (2018). Some applications of fixed point results for generalized two classes of Boyd-Wong's F-

Continuous in partial metric spaces. Math Sci Springer. 12(2): 111-127.

[14] Asim M., Imdad M. and Shukla S. (2021). Fixed point results for Geraghty-weak contractions in ordered partial rectangular b-metric spaces. Afirika Mathematika. 32: 811-827.

الفضاء المتري الجزئي من النمط b المستطيل مع بعض النتائج

نور رياض أديب

قسم الرياضيات, كلية العلوم للبنات, جامعة بغداد, بغداد, العراق

الملخص

قدمنا في هذا البحث تعميماً جديداً للفضاء المتري يدعى الفضاء المتري الجزئي من النمط b المستطيل. كذلك وضحنا العلاقة بين هذا التعميم والتعميمات الأخرى مثل الفضاء المتري من النمط b المستطيل. علاوةً على ذلك قمنا ببرهان مبدأ بناخ الانكماشي للنقطة الصامدة ومبرهنة كانان للنقطة الصامدة في الفضاء المتري الجزئي من النمط b المستطيل. بالإضافة الى ذلك ناقشنا بعض التعاريف والنتائج المتعلقة بالفضاء المتري الجزئي من النمط b المستطيل.