A SINGLE MUTUAL FIXED POINT THEOREM USING Փ- CONTRACTION IN PARTIAL –b– METRIC SPACES

Main Article Content

Muayyad Mahmood Khalil

Abstract

In this paper we proved a common fixed point theorem by using Փ- contraction condition and also provided an example which supports our main result.

Article Details

How to Cite
Muayyad Mahmood Khalil. (2023). A SINGLE MUTUAL FIXED POINT THEOREM USING Փ- CONTRACTION IN PARTIAL –b– METRIC SPACES. Tikrit Journal of Pure Science, 22(6), 140–143. https://doi.org/10.25130/tjps.v22i6.802
Section
Articles

References

[1] I. A. Bakhtin, The contraction principle in quasi metric spaces, It. Funct. Anal., 30 (1989), 26-37.

[2] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena. 46 (1998), 263 - 276.

[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Osrav., 1 (1993), 5-11.

[4] S. G. Matthews, Partal metric topology Proc. 8th Summer Conference on General Topology and Applications, Ann. N.Y. Acad. Sci., 728 (1994), 183-197.

[5] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterranean Journal of Mathematics, doi:101007/s00009-013-0327-4, (2013).

[6] A. Kaewcharoen, T. Yuying, Unique common fixed point theorems on partial metric spaces, Journal of Nonlinear Sciences and Applications, 7 (2014), 90- 101.

[7] C. Vetroa, F. Vetrob, Common fixed points of mappings satisfying implicit relations in partial metric spaces, Journal of Nonlinear Sciences and Applications, 6 (2013), 152-161.

[8] T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Banach contraction principle for

Cyclical mappings on partial metric spaces, Fixed Point Theory and Applications, 2012, 2012:154, 7 pp.

[9] T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Best Proximity Points For Cyclical Contraction Mappings With 0-Boundedly Compact Decompositions, Journal of Computational Analysis and Applications, 15 (2013), 678 - 685.

[10] H. Nashinea, M. Imdadb, M. Hasanc, Common fixed point theorems under rational contractions in complex valued metric spaces, Journal of Nonlinear Sciences and Applications, 7 (2014), 42-50.

[11] W. Shatanawia, H. Nashineb, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, Journal of Nonlinear Sciences and Applications, 5 (2012), 37-43.

[12] H. Aydi, Some fixed point results in ordered partial metric spaces, Journal of Nonlinear Sciences and Applications, 3 (2011), 210 - 217.

[13] H. Aydi, M. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set valued quasi-contractions in b-metric spaces, Fixed Point Theory and its Applications, 2012, 2012:88, 8 pp.

[14] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point result in ordered partial b-metric spaces, Journal of Inequalities and Applications, (2013), 2013:562.

[15] K. Jha, R.P. Pant and S.L. Singh, On the existence of common fixed points for compatible mappings, Punjab Univ. J. Math., 37 (2005), 39 – 48.

[16] E. Karapinar, R. P. Agarwal, A note on Coupled fixed point theorems for α - ψ - contractive-type mappings in partially ordered metric spaces, Fixed Point Theory and Applications, 2013, 2013:216, 16 pp.

[17] E. Karapinar, B. Samet, Generalized α - ψ - contractive type mappings and related fixed point theorems with applications, Abstract and Applied Analysis, (2012), Art. ID 793486, 17 pp. 1.7, 1.8

[18] M. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1 - 9

[19] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α -ψ - contractive type mappings, Nonlinear Analysis, 75 (2012), 2154-2165.