Histological Changes Indused by Monosodium Glutamate on the Growth and Development of the Offsprings Albino Mice Cornea

Main Article Content

Maieda Noori Ibrahim
Samira Abd Al Hussian

Abstract

This research aim to study the effect of different doses of a Monosodium Glutamate (MSG) to cause histopathological changes in the offspring corneal for the ages 7, 15, 21, 30, and 60 days. The mothers, type Mus musculus mice has been orally administrated from 17th day of pregnancy by different concentrations (2, 4, and 8 g/Kg/ body weight) of MSG using stomach tube. Microscopic examination showed no changes in the cornea for a seventh day and administrated concentrations of 2 and 4 g / kg body weight, but observed degeneration of fibre  stroma, necrosis and the reduction of the anterior epithelial layer of the cornea at dose of 8 g / kg. In the group of 15 days, these changes are mentioned; hyperplasia in the anterior epithelium of the peripheral cornea of 2 g, deformation in the peripheral part of the cornea and the reduction of thickness and intensify the stroma components at a concentration of 4 g either at a concentration of 8 g / kg has appeared  hyperplasia in fibroblast cells in the corneal stroma and wave of the basement membrane of anterior epithelial tissue of central cornea. In a group 21days, these changes are shown; necrosis and rarefaction in stroma of central cornea while the reduction of the anterior epithelial layer of the peripheral cornea notes and wave anterior surface of the cornea in the concentration of 2 g / kg. Deformation appeared and reduction layers and irregular with dissociation in the stromal fibers in some areas in the concentration of 4 g / kg, while in the concentration of 8 g / kg show damage in the anterior part of epithelial of the central corneal tissue. In a group 30 days and concentration of 2 g / kg, these changes were observed; necrosis, swelling in some anterior epithelial cells, condensation of nuclei in endothelial  cells, with Keratinized at the surface of the cornea and edema in the stroma. Bulge appeared in the stroma of peripheral cornea and hyperplasia in fiberoblast at a concentration of 4g/kg, meanwhile at a concentration of 8 g/kg show necrosis under the anterior epithelium of central cornea and  dissociation of stromal fiberoblast.  In the group 60 Days at the concentration of 2 g / kg show damage in the anterior epithelial tissue of the peripheral cornea and hyperplasia in some parts of the anterior epithelial tissue in the central cornea. At the concentration of 4g/kg show damage in the stromal fibers of peripheral corneal epithelium and detachment of endothelial tissue. In concentration  8 g/kg reduction appeared in the anterior epithelial tissue in the certain part of the cornea,  hyperplasia in endothelial tissue, condensed  layer appeared on the surface of anterior epithelial tissue.                                                                                                      

Article Details

How to Cite
Maieda Noori Ibrahim, & Samira Abd Al Hussian. (2023). Histological Changes Indused by Monosodium Glutamate on the Growth and Development of the Offsprings Albino Mice Cornea. Tikrit Journal of Pure Science, 22(7), 49–59. https://doi.org/10.25130/tjps.v22i7.832
Section
Articles

References

1- Abd-Allah, M.M. (2011). Effect of monosodium glutamate on postnatal development of lateral geniculate body and visual cortex in albino rats. Unpublished PhD thesis, University of Assiut, 186 p.

2- Rankin, I. (2010). Monosodium Glutamate: An Assessment of Health Implications in Human and Animal Studies. Senior Research Thesis, Wofford College, South Carolina, 54p.

3- Kingsley, O.A., Jacks, T.W., Amaza, D.S., Tarfa, M., Peters, A.T. and Otong, E.S. (2013). The Effect of Monosodium Glutamate (MSG) on the Gross Weight of the Heart of Albino Rats., Sch. J. App. Med. Sci., 1(2):44-47.

4-Walker, R. and Lupien, J.R. (2000).The Safety Evaluation of Monosodium Glutamate. J. Nutr., 130 (4): 1049S-1052S.

5-Eweka, A.O. and Adjene, J.O. (2007). Histological studies of the effects of monosodium glutamate on the medial geniculate body of adult Wister Rat. Electron. J. Biomed., 2: 9-13.

6-Ninomiya, K. (1998). Natural occurrence. Food rev. Int., 14 (3&3): 177- 211 .

7-Tawfik1, M. S. and Al-Badr, N. (2012). Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food and Nutrition Sciences, 3: 651-659.

8-Gudino-Cabrera, G. Urena-Guerrero, M.E., Rivera Cervantes, M.C., Alfredo, I. Feria-Velasco, A. I., and Beas-Zarate, C. (2014). Excitotoxicity Triggered by Neonatal Monosodium Glutamate Treatment and Blood-Brain Barrier Function. Arch. Med. Res., 45: 653 - 659.

9- Wu, G. (2010). Functional amino acids in growth, reproduction and health. Adv. Nutr., 1: 31-37.

10- Burrin, D.G. and Stoll, B. ( 2009). Metabolic fate and function of dietary glutamate in the gut. Am. J. Clin. Nutr., 90: 850S-856S .

11-Ali, H.S., El-Gohary, A.A., Metwally, F.G. Sabra, N.M. and El Sayed, A. A. (2012). Mono Sodium Glutamate-induced Damage in Rabbit Retina: Electroretinographic and Histologic Studies. Glob. J. Pharmacol., 6 (3): 148-159.

12- Schultz, S.G., Yu-Yu, I. Alvafez, O.O. and Curran, P.F. (1970). Dicacarboxylic amino acid influx across brush border of rabbit ileum. J. Gen. Physiol., 56:621-639.

13-Ishikawa,M. (2013). Abnormalities in Glutamate Metabolism and xcitotoxicity in the Retinal Diseases. Hindawi Publishing Corporation Scientifica. ID5 28940,13p.

14- Pedersen, V. and Schmidt, W. J. (2000). The neuroprotectant properties of glutamate antagonists and antiglutamatergic drugs. Neurotox. Res., 2: 179–204.

15- Danysz, W. and Parsons, C.G. (2002). Neuroprotective potential of ionotropic glutamate receptor antagonists. Neurotox. Res., 4:119– 126.

16- Carozzi, V.A., Canta, A., Oggioni, N., Ceresa, C., Marmiroli, P., Konvalinka, J. and et al., (2008). Expression and distribution of 'high affinity' glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J. Anat., 213:539–546.

17-Stagg, C. J., Bestmann, S., Constantinescu, A. O., Moreno, L.M., Allman, C., Mekle, R. and et al.

(2011). Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol., 589:5845–55.

18-El-Hassar, L., Hagenston, A.M., D' Angelo, L.B. and Yeckel MF.(2011). Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca(2)(+) wave-dependent activation of SK and TRPC channels. J. Physiol., 589:3211–29.

19- López-Pérez, S.J., Ureña-Guerrero, M.E., Morales - Villagrán, N. (2010). Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Res., 1317: 246 – 256.

20- Rugh, R. (1964). Vertebrate Embryology. The Dynamic of Development. Chapter 6: The Mouse: Harcourt, Brace and World, INC. New York. 237- 303.

21-Rugh, R.,(1968). The mouse, its reproduction and development Burgess . publishing Co.,430p.

22-Ozeki, H. and Shirai, S. (1998). Developmental Eye Abnormalities in Mouse Fetuses Induced by Retinoic Acid. Jpn. J. Ophthalmol., 42(3): 162-167.

23- Padmanabhan, R., Singh, G. and Singh, S. (1981). Malformations of the Eye Resulting from Maternal Hypervitaminosis A During Gestation in the Rat. Acta. Anat., 110(4): 291-298.

24- Biernacki, B., Wfodarezyk, B. and Minta, M. (2000). Effect of Sodium Valporate on rat embryo development in vitro. Bull, Vet . Int. s. Pulway, 44 : 201-205.

25- Kohn, D.F. and Barthold , S.P.(1984). Biology and Diseases of rats In: Fox JG, editor. Labrotory Animal Medicine. Academic Press: Inc.(London) Ltd; pp 95-97 .

26-Carleton, M. A., Drury, R. S., Wallington, E. A. and Gameron, S. R. (1967). Histological techniques. ,Oxfored Univ. Press. 432p.

27- Luna, l. g.(1968). Manual of histological staining methods of the forces institute of pathology. 3th ed. McGraw-Hill Book, New York,pp.5- 35.

28-Humason, G.L.(1979). Animal tissue technique .4th ed. W.H. Freeman and company, USA., pp 569.

29-Henriksson, J.T., McDermott, A. M. and Bergmanson, J.P.G. (2009). Dimensions and Morphology of the Cornea in Three Strains of Mice. Invest. Ophthalmol. Vis. Sci., 50(8): 3648–3654.

30-Henriksson, J.T., Bron, A. J., Bergmanson J.P.G. (2012). An explanation for the central to peripheral thickness variation in the mouse cornea. Clin. Exp. Ophthalmol., 40:174–181.

31- Sisk, D. R. and Kuwabara, T.(1985). Histologic changes in the inner retina of albino rats following intravenous injection of monosodium L-glutamate. J. Clin. Exp. Ophthalmo., 223(5):250-258.

32-Matyskova, R., Maletinska, L., Maixnerova, J., Pirnik, Z., Kiss, A. and Zelezna, B. (2008). “Comparison of the Obesity Phenotypes Related to Monosodium Glutamate Effect on Arcuate Nucleus and/or the High Fat Diet Feeding in C57BL/6 and NMRI Mice.” Physiol. Res., 57(5): 727-34.

33-Ohguro, H., Katsushima, H., Maruyama, I., Maeda, T., Yanagishi, S., and Metoki, T. (2002). A high dietary intake of sodium glutamate as flavoring (ajinomoto) causes gross changes in retinal morphology and function. Exp. Eye Res., 75(3):307-315.

34- Abe, M., Saito, M. and Shimazu, T. (1990). Neuropeptide-Y in specific hypothalamic nuclei of rats treated neonatally with monosodium glutamate. Brain Res. Bull., 24: 289–291.

35- Pelaez, B., Blazquez, J. L., Pastor, F. E., Sanchez, A. and Amat, P. (1999). “Lectinhistochemistry and Ultrastructure of Microglial Response to Monosodium Glutamate-Mediated Neurotoxicity in the Arcuate Nucleus. ” Histology and histopathology, 14(1): 165-174.

36- Olney, J.W. (1969b).Glutamate induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J. Neuropathol. Exp. Neurol., 28: 455-474.

37- Hansson, H. A. (1970). Ultrastructural studies on the long term effects of sodium glutamate on the rat retina. Virchows Arch. Abt. B. Zellpath. 6, 1-1 1.

38- Olney, J.W. (1982). The toxic effects of glutamate and the related compound in the retina and the brain. Retina, 2: 341 -359.

39- Goldsmith, P.C. (2000). Neuroglial responses to elevated glutamate in the medial basal hypothalamus of the infant mouse. J. Nutr., 130: 1032s -1038s.

40- Olney, J.W., Labruyere, J. and De Gubareff, T. (1980). Brain damage in mice from voluntary ingestion of glutamate and aspartate. Neurobehav. Toxicol., 2: 125–129.

41- Yu, L., Zhang, Y., Ma, R., Bao, L., Fang, J. and Yu, T. (2006). Potent protection of ferulic acid against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Eur. Neuropsychopharmacol., 16:170–177.

42- Ali, M.M., Bawari, M., Misra, U.K. and Babu, G.N. (2000). Locomotor and learning deficits in adult rats exposed to monosodium L-glutamate during early life. Neurosci. Lett., 284:57– 60.

43- Fogal, B., Trettel, J., Uliasz. T.F., Levine, E.S. and Hewett, S.J. (2005). Changes in secondary glutamate release underlie the development regulation of excitotoxic neuronal cell death. Neuroscience, 132:929–942.