Atom-Bond Connectivity and Geometric Arithmetic Indices of Dendrimer Nanostars

Main Article Content

N.M. Husin
R. Hasni
N.E. Arif

Abstract

Let G be a molecular graph. The atom-bond connectivity (ABC) and geometric-arithmetic (GA) indices of G are defined as  and  , where  (or ) denoted the   degree  of the  vertex  u  (or  v),  respectively.  A  dendrimer  is  a hyperbranched molecule built up from branched units called monomers. In this paper, the ABC and GA indices for two families of dendrimer nanostars are presented.

Article Details

How to Cite
N.M. Husin, R. Hasni, & N.E. Arif. (2023). Atom-Bond Connectivity and Geometric Arithmetic Indices of Dendrimer Nanostars. Tikrit Journal of Pure Science, 22(11), 92–95. https://doi.org/10.25130/tjps.v22i11.921
Section
Articles

References

[1] S. Alikhani, M.A. Iranmanesh, Chromatic

polynomials of some dendrimers, J. Comput. Theor.

Nanosci., 7(11) (2010), 2314-2316.

[2] S. Alikhani, M.A. Iranmanesh, Chromatic

polynomials of some nanostars, Iranian Journal of

Math. Chemist., Vol. 3, No. 2 (2012), 127-135.

[3] A. R. Ashrafi, M. Mirzargar, PI, Szeged, and edge

Szeged indices of an infinite family of nanostar

dendrimers, Indian J. Chem., 47A (2008), 538-541.

[4] K. C. Das, Atom-bond connectivity index of

graphs, Discrete Appl. Math.158 (2010), 1181- 1188.

[5] K. C. Das, N. Trinajstic, Comparison between

first geometric–arithmetic index and atom- bond

connectivity index, Chemical Physics Letters 497

(2010) 149–151.

[6] K. C. Das, I. Gutman, B. Furtula, On atom-bond

connectivity index, Chemical Physics Letters 497

(2010) 149–151.

[7] K. C. Das, I. Gutman, B. Furtula, On atom-bond

connectivity index, Filomat 26(4) (2012), 733-738.

[8] K. C. Das, I. Gutman, B. Furtula, Surveys on

geometric–arithmetic indices of graphs, MATCH

Commun. Math. Comput. Chem., 65 (2011), 595-644.

[9] E. Estrada, L. Torres, L. Rodr´ýguez, I. Gutman,

An atom-bond connectivity index: Modelling the

enthalpy of formation of alkanes, Indian J. Chem.

37A (1998), 849-855.

[10] E. Estrada, Atom-bond connectivity and the

energetic of branched alkanes, Chem. Phys. Lett. 463

(2008), 422-425.

[11] G.H. Fath - Tabar, B. Vaez - Zadeh, A.R. Ashrafi,

A. Graovac, Some inequalities for the atom-bond

connectivity index of a graph, Discrete Appl.

Math.159 (2011), 1323-1330.

[12] B. Furtula, A. Graovac, D. Vuki¡cevi´c, Atombond

connectivity index of trees, Discrete Appl.

Math.157 (2009), 2828-2835.

[13] A. Iranmanesh, N. A. Gholami, Computing the

Szeged index of styrylbenzene dendrimer and

triarylamine dendrimer of generation 1 - 3, MATCH

Commun. Math. Comput. Chem., 62 (2009), 371-379.

[14] M. Mirzagar, PI, Szeged and edge Szeged

polynomials of a dendrimer nanostar, MATCH

Commun. Math. Comput. Chem., 62 (2009), 363-370.

[15] M. Randic, On characterization on molecular

branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.

[16] D. Vukicevic, B. Furtula, Topological index based

on the ratios of geometrical and arithmetical means of

end-vertex degrees of edges, J. Math. Chem 26

(2009), 1369-1376.

[17] R. Xing, B. Zhou, Z. Du, Further results on atombond

connectivity index of trees, Discrete Appl.

Math.158 (2010), 1536-1545.