The Role of IL-18 and Human Cytomegalovirus in Type 1 Diabetes Mellitus in Thi-Qar Province

Main Article Content

Ali G. Ammar
Mohaned H. Mahmood Al-Izzi
Hind M. Mousa

Abstract

Previous studies indicated that elevated serum levels of Interleukin -18 (IL-18) and human cytomegalovirus (HCMV) antibodies have a fundamental role in the pathogenesis of Type I diabetic mellitus T1DM. Therefore, the aim of the current study was to investigate the possible overlap between human cytomegalovirus (HCMV) and Interleukin-18 (IL-18) with the pathogenesis of T1DM. The serum of (45) T1DM patients and (45) healthy controls were used to detect IL-18 levels with an ELISA Kit and detect HCMV with cobas c411 apparatus for detect IgM and IgG HCMV.


The results showed that the levels of IL-18 and human CMV IgM, IgG were significantly higher in patients with type 1 diabetes compared to the control group (45.8773 ±12.196 and 0.52 ± 0.25, 63.52 ±13.0 pg/ml for patients respectively) versus (12.611 ±3.9 and 0.11 ±0.01, 0.261 ±0.68 pg/ml for healthy subjects, respectively); The values were ​​at P value ≤ 0.05.


The results of the data concluded that there was a significant increase of IL-18 and human CMV IgM, IgG in the serum of the patient group compared to the lower levels in the control group, indicating that these markers may be involved in the pathogenesis and development of T.


These data concluded that there was a significant increase in serum IL-18 and HCMV Abs, compared to the lower levels in the control group, indicating that these markers may be involved in the pathogenesis and development of T1DM.

Article Details

How to Cite
Ali G. Ammar, Mohaned H. Mahmood Al-Izzi, & Hind M. Mousa. (2022). The Role of IL-18 and Human Cytomegalovirus in Type 1 Diabetes Mellitus in Thi-Qar Province. Tikrit Journal of Pure Science, 26(1), 18–23. https://doi.org/10.25130/tjps.v26i1.94
Section
Articles

References

[1] Atkinson, M. A. (2012). The pathogenesis and natural history of type 1 diabetes. Cold Spring Harbor perspectives in medicine, 2(11), a007641.

[2] Li, M., Song, L. J., & Qin, X. Y. (2014). Advances in the cellular immunological pathogenesis of type 1 diabetes. Journal of cellular and molecular medicine, 18(5), 749-758.

[3] Jun, H. S., & Yoon, J. W. (2004). A new look at viruses in type 1 diabetes. ILAR journal, 45(3), 349-374.

[4] Aarnisalo, J., Ilonen, J., Vainionpää, R., Volanen, I., Kaitosaari, T., & Simell, O. (2003). Development of antibodies against cytomegalovirus, varicella-zoster virus and herpes simplex virus in Finland during the first eight years of life: a prospective study. Scandinavian journal of infectious diseases, 35(10), 750-753.

[5] Cannon, M. J., Schmid, D. S., & Hyde, T. B. (2010). Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Reviews in medical virology, 20(4), 202-213.

[6] Alanen, A., Kahala, K., Vahlberg, T., Koskela, P., & Vainionpää, R. (2005). Seroprevalence, incidence of prenatal infections and reliability of maternal history of varicella zoster virus, cytomegalovirus, herpes simplex virus and parvovirus B19 infection in South‐Western Finland. BJOG: An International Journal of Obstetrics & Gynaecology, 112(1), 50-56.

[7] Haaheim, L. R., Pattison, J. R., & Whitley, R. J. (Eds.). (2002). A practical guide to clinical virology. John Wiley & Sons.

[8] Boeckh, M., Nichols, W. G., Papanicolaou, G., Rubin, R., Wingard, J. R., & Zaia, J. (2003). Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biology of Blood and Marrow Transplantation, 9(9), 543-558.

[9] Gandhi, M. K., & Khanna, R. (2004). Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. The Lancet infectious diseases, 4(12), 725-738.

[10] Adler, S. P., Nigro, G., & Pereira, L. (2007, February). Recent advances in the prevention and treatment of congenital cytomegalovirus infections. In Seminars in perinatology (Vol. 31, No. 1, pp. 10-18). WB Saunders.

[11] Kaur, K. K. (2020). Attempting Getting Insulin Independent Immunotherapies in Type 1 Diabetes Mellitus (T1D) in the Pre-Stage 1 (Before Islet Autoantibodies). Acta Scientific Paediatrics, 3, 01-04.

[12] Ibrahim Saber A-Z A-B, Mohammed AH (2019): The role of Human Cytomegalovirus and Epstein-Barr virus in type 1 Diabetes Mellitus, Ann Trop & Public Health; 22(9): S267.

[13] Yaribeygi, H., Atkin, S. L. and Sahebkar, A. (2019) Interleukin‐18 and diabetic nephropathy: A review, Journal of cellular physiology, 234(5), pp. 5674–5682.

[14] Nariai, Y., Kamino, H., Obayashi, E., Kato, H., Sakashita, G., Sugiura, T., ... & Kadomatsu, K. (2019). Generation and characterization of antagonistic anti-human interleukin (IL)-18 monoclonal antibodies with high affinity: two types of monoclonal antibodies against full-length IL-18 and the neoepitope of inflammatory caspase-cleaved active IL-18. Archives of biochemistry and biophysics, 663, 71-82.

[15] Toma, V., Cioloca, D. P., Forna, D. A., Hurjui, L., Botnariu, G. I., Nechifor, I. E., ... & Holban, C. (2016). IL 18 as an important gingival inflammatory biochemical marker in children and adolescents with insulin-dependent diabetes mellitus. Rev. Chim. (Bucharest), 67(12), 2545-2551.

[16] Saleh M.M. S, Dhamad G. D, and Kamel L. AE. (2014). Inflammatory markers mediated diabetic nephropathy in patients with type 1 and type 2 diabetes mellitus. Fac Med Baghdad, 56, (4):401-404.

[17] Pearson-Stuttard, J. et al. (2016) Diabetes and infection: assessing the association with glycaemic control in population-based studies, The lancet Diabetes & endocrinology, 4(2), pp. 148–158.

[18] Harms, R. Z., Yarde, D. N., Guinn, Z., Lorenzo-Arteaga, K. M., Corley, K. P., Cabrera, M. S., & Sarvetnick, N. E. (2015). Increased expression of IL-18 in the serum and islets of type 1 diabetics. Molecular immunology, 64(2), 306-312.

[19] Ahmad, R., Thomas, R., Kochumon, S., & Sindhu, S.(2017). Increased adipose tissue expression of IL‐18R and its ligand IL‐18 associates with inflammation and insulin resistance in obesity. Immunity, inflammation and disease, 5(3), 318-335.

[20] Ali, Y., El-Gahel, H. E. S., Abdel-Hakem, N. E., El-Hefnawy, M. H., & Ebeid, M. E. (2018). Gene polymorphism of Il-18 as a pro-inflammatory mediator and susceptibility of diabetes type 1in Egyptian children. Research Journal of Applied Biotechnology, 4(2), 20-29.

[21] Hussein, I. A., AL-Abassi, H. M., & Nasser, A. A. (2017). IFN-γ T/A+ 874 Gene Polymorphism in Type 1 Diabetes Mellitus of Iraqi Children. Ibn AL-Haitham Journal for Pure and Applied Science, 29(1).

[22] Majeed M N., (2008) Childhood Diabetes Mellitus InThi-Qar city. Iraqi Academic Scientific Journal, (2), 1, 31-38.

[23] Madha Mohammed Sheet Saleh, Ali JabbarEdan, Sabah N Mohammed, (2012) Investigation of Certain Immunological Markers inFirst Degree Relatives of Type 1 Diabetic Patients. Iraqi Academic Scientific Journal. 11, (1), 62-70.

[24] Apicella, M., Campopiano, M. C., Mantuano, M., Mazoni, L., Coppelli, A., & Del Prato, S. (2020). COVID-19 in people with diabetes: understanding the reasons for worse outcomes. The lancet Diabetes & endocrinology: 8; 782–92.

[25] Elsehmawy, A. A. E. W., El-Toukhy, S. E., Seliem, N. M. A., Moustafa, R. S., & Mohammed, D. S. (2019). Apelin and chemerin as promising adipokines in children with type 1 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy ; 12:383-389.

[26] Danne, T., Lüpke, K., Walte, K., Von Schuetz, W., & Gall, M. A. (2003). Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. Diabetes care, 26(11), 3087-3092.

[27] Kandala, N. J., & Abdul Ridha, R. H. (2016). Association of genetic polymorphisms in a sample of Iraqi patients with type1 diabetes mellitus. Int J Curr Microbiol Appl Sci, 5, 725-732.

[28] Derraik, J. G., Reed, P. W., Jefferies, C., Cutfield, S. W., Hofman, P. L., & Cutfield, W. S. (2012). Increasing incidence and age at diagnosis among children with type 1 diabetes mellitus over a 20-year period in Auckland (New Zealand). PLoS One, 7(2), e32640.

[29] Wherrett, D., Huot, C., Mitchell, B., Pacaud, C.D. (2000). Type 1 Diabetes in Children and Adolescents. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, 12(2): 1-3.

[30] Dong, G., Liang, L., Fu, J., & Zou, C. (2007). Serum interleukin-18 levels are raised in diabetic ketoacidosis in Chinese children with type 1 diabetes mellitus. Indian Pediatrics, 44(10), 732.

[31] Esposito, K., Nappo, F., Marfella, R., Giugliano, G., Giugliano, F., Ciotola, M., ... & Giugliano, D. (2002). Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation, 106(16), 2067-2072.

[32] Yasir SJ, Abbas HH, Al-heidery ZH (2013): Screening of Human Cytomegalovirus (CMV) in Diabetic Patients in Najaf Governorate, Medical Journal of Babylon;10(1):236-244.

[33] Ahmad-Abakur EH, Abdelkareem MA, Abrahim-Holi, Mohamed A, Ali A (2014): Associations of cytomegalovirus with type I diabetes mellitus among children in Khartoum State, African J Microbiol Res;8(16):1730–1734.

[34] Abdel-Moneim, A., El-Senousy, W. M., Abdel-Latif, M., Khalil, R. G., & Arafa, A. A. (2017). Increased incidence of Anti-IgG of Coxsackievirus and cytomegalovirus among diabetic children in Egypt. International Journal of Bioassays, 6(9), 5489-93.

[35] Al-Hakami, A. M., Shati, A. A., Alsuheel, A. M., Hakami, A. R., Al Qahtani, M. A., Jelban, H. M., & Ali, A. S. (2016). Seroprevalence of human cytomegalovirus antibodies among children with type I diabetes mellitus in the Aseer Region, Southwest KSA. Journal of Taibah University Medical Sciences, 11(4), 388-394.

[36] Aarnisalo, J., Veijola, R., Vainionpää, R., Simell, O., Knip, M., & Ilonen, J. (2008). Cytomegalovirus infection in early infancy: risk of induction and progression of autoimmunity associated with type 1 diabetes. Diabetologia, 51(5), 769-772.

[37] Dedinská, I., Laca, Ľ., Miklušica, J., Kantárová, D., Galajda, P., & Mokáň, M. (2016). Correlation between CMV infection and post-transplantation new-onset diabetes mellitus. International journal of organ transplantation medicine, 7(3), 173-182.

[38] Yoon, J. W., Ihm, S. H., & Kim, K. W. (1989). Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes research and clinical practice, 7, S47-S58.

[39] Yoneda, S., Imagawa, A., Fukui, K., Uno, S., Kozawa, J., Sakai, M., ... & Shimomura, I. (2017). A histological study of fulminant type 1 diabetes mellitus related to human cytomegalovirus reactivation. The Journal of Clinical Endocrinology & Metabolism, 102(7), 2394-2400.