Anti–biotypes of Different Bacteria Isolated from Different Clinical Sources

Main Article Content

Rebwar M. Hama Salih
Khadija K. Mustafa
Zirak F.A. Abdulrahman

Abstract

A collective of 1178 different isolates were collected and identified from clinical specimens of human patients and these sources include urine (n=641), swab (n=483), wound (n=29) and blood (n=25). A present study were confirmed on antibiotic resistance against some pathogenic bacterial genera (n=1178) which include Escherichia coli (n=417), Staphylococcus aureus (n=377), Klebsiella pneumoniae (n=212), Pseudomonas aeruginosa (n=145) and Streptococcus spp. (n=27) isolates; was carried out in Internal Lab from Teaching Hospital in Erbil city, in September 15, 2012 to June 20, 2013. Susceptibility was determined by the disc diffusion method recommended by the Clinical and Laboratory Standard Institute (CLSI). The following antimicrobials were tested: AMC 20µg, AK (30µg), AM (30µg), AZM (15µg), ATM (30µg), CAR (100µg), CF (30µg), CEC (30µg), CFZ (15µg), CD (5µg), CFM (30µg), CPO (30µg), CP (75µg), FOX (30µg), CPR (30µg), CXM (30µg), KF (30µg), C (30µg), CN (100µg), CIP (5µg), CLM (15µg), DA (2µg), CT (10µg), E (15µg), G (10µg), GIP (5µg), IPM (10µg), DP (5µg), NAF (1µg), NF (30µg), F (300µg), NOR (10µg), OX (1µg), PG (10µg), PIP (100µg), RA (5µg), TE (30µg), TC (75µg), TOB (10µg), SXT (1.25/23.75µg), and VA (30µg). The resistances percent of all bacterial isolates show different range of resistant which start from 0.00% and reach to 100%.

Article Details

How to Cite
Rebwar M. Hama Salih, Khadija K. Mustafa, & Zirak F.A. Abdulrahman. (2023). Anti–biotypes of Different Bacteria Isolated from Different Clinical Sources. Tikrit Journal of Pure Science, 21(1), 21–30. https://doi.org/10.25130/tjps.v21i1.943
Section
Articles

References

1. Okonko N.A., Lennox J.A., Adewale O.G., Motayo B.O., et al., (2010). "Survey of the Efficacy and Quality of Some Brands of the Antibiotics Sold in Calabar Metropolis, South Region of Nigeria". Elect. J. Environ., Agricult. Food Chem., 9 (7): 1232–1248.

2. Heffernan H., Wong T.L., Lindsay J., Bowen, B. and Woodhouse, R., (2011). "A Baseline Survey of Antimicrobial Resistance in Bacteria from Selected New Zealand Foods 2009–2010, Antibiotic Reference Laboratory". Institute of Environmental Science and Research, MAF’s (Ministry of Agriculture and Forestry) Agricultural Compounds and Veterinary Medicines (ACVM), pp. 4–5.

3. Uwaezouke J.C. and Aririatu, L.E., (2004). "A Survey of Antibiotic Resistant Staphylococcus aureus Strains from Clinical Sources in Owerri".J. Appl. Sci. Environ., 8 (1): 67–69.

4. Fluit A.C., Jones M.E, Schmitz F.J., Acar J., et al., (2000). "Antimicrobial Susceptibility and Frequently

of Occurrence of Clinical Blood Isolates in Europe from the SENTRY Antimicrobial Surveillance Program, 1997 and 1998". Clin. Infect. Dis., 30: 454–460.

5. Sahm D.F., Thornsberry C., Mayfield D.C., Jones M.E. and Karlowsky J.A., (2001). "Multi–Drug Urinary Tract Isolates of Escherichia coli: Prevalence Demographics in the United States in 2000". Antimic. Ag. Chemo., 45: 1402–1406.

6. Stelling J.M., Travers K., Jones R.N., Turner P.J., et al., (2005). "Integrating Escherichia coli Antimicrobial Susceptibility Data from Multiple Surveillance Programs". Emerge. Infect. Dis., 11 (6): 873–882.

7. Blondeau J.M., (2004). "Current Issues in the Management of Urinary Tract Infections: Extended Release Ciprofloxacin as Novel Treatment Option". Drugs, 64: 611–628.

8. Chinwe C.O. and Ezeronye O.U., (2003). "Antibiotic Resistant Staphylococcus aureus in Abia State of Nigeria". Afr. J. Biotech., 2 (10): 374–378.

9. Akindele A.A., Adewuyi I.K., Adefioye O.A., Adedokun S.A. and Olaolu A.O., (2010). "Antibiogram and Beta Lactamase Production of Staphylococcus aureus Isolates from Different Human Clinical Specimens in a Tertiary Health Institution in Ile-Life, Nigeria". Amer. – Euras. J. Sci. Res., 5 (4): 230–233.

10. Kayser F.H., Bienz K.A., Eckert J. and Zinkernagel R.M., (2005). "Medical Microbiology". 1st ed. London: Blackwell Science Ltd., pp.278–282.

11. Toroglu S. and Keskin D., (2011). "Antimicrobial Resistance and Sensitivity among Isolates of Klebsiella pneumoniae from Hospital Patients in Turkey". Intern. J. Agricult. Bio., 13 (6): 941–946.

12. Arora D., Jindal N. and Romit R.K., (2011). "Antibiotic Resistance in Pseudomonas aeruginosa Challenge". International Journal of Pharmacy and Pharmaceutical Sciences, 3(2): 82–84.

13. Vives F.M. and Garnica D., (2006). "Comparison of Virulence between Clinical and Environmental Pseudomonas aeruginosa isolates". Internat. Microb., 9: 247–252.

14. Loureiro M.M., de Moraes B.A., Mendonça V.L., Quadra M.R., et al., (2002). "Pseudomonas aeruginosa: Study of Antibiotic Resistance and Molecular Typing in Hospital Infection Cases in a Neonatal Intensive Care Unit from Rio de Janeiro City, Brazil". Memórias do InstitutoOswaldo Cruz, 97(3): 387–394.

15. Cavalieri S.J., Rankin I.D., Harbeck R.J., Sautter R.L., et al., (2005). "Manual of Antimicrobial Susceptibility Testing. Library of Congress Cataloging in Publication Data". American Society for Microbiology, pp. 168.

16. Hardie J.M. and Whiley R.A., (1997). "Classification and Overview of the Genera Streptococcus and Enterococcus". J. Appl. Microb. Sym. Supp., 83: 1–11.

17. National Committee for Clinical Laboratory Standards (NCCLS), (2013). "Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard". 4th ed. Document VET01 – A4. USA, 33(7): 1–17.

18. Desai K.J. and Malek S.S., (2009). "Neonatal Septicemia: Bacterial Isolates and Their Antibiotics Susceptibility Patterns". Nat. J. Int. Res. Med., 1 (3): 12–15.

19. Egbebia O. and Famurewa O., (2011). "Antibiotic Resistance of Klebsiella Isolated from Some Hospitals in South West, Nigeria to Third Generation Cephalosporins". Adv. Trop. Med. Pub. Heal. Intern., 1 (3): 95–100.

20. Younis N.S., (2011). "Neonatal Sepsis in Jordan: Bacterial Isolates and Antibiotic Susceptibility Patterns". Rawal Med. J., 36 (3): 1–16.

21. Anil, C., and Shahid, R.M., (2013). Antimicrobial Susceptibility Patterns of Pseudomonas aeruginosa Clinical isolates at a Tertiary Care Hospital in Kathmandu, Nepal. Asian J. Pharma. Clin. Res., 6(3): 235–238.

22. Tariro, A.C., and Stanley, M., (2011). In Vitro Antibacterial Activity of Selected Medicinal Plants from Zimbabwe. The African J. Plant Sci. Biotech., 5 (1): 1–7.

23. Stavri, M., Piddock, L.V.J., and Gibbons, S., (2007). Bacterial efflux pumps inhibitors from natural sources. J. Antimicrob. Chemotherap., 59: 1247–1260.

24. Amusan, O.O.G., Sukati, N.A., Dlamini, P.S., and Sibandze, F.G., (2007). Some Swazi phytomedicines and their constituents. African J. Biotech., 6:267–272.

25. Stermitz, F.R., Lorenz, P., and Tawara, J.N., (2000). Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences USA, 97: 1433–1437.

26. Ghafourian S., Bin – Shekawi Z., Sadeghifard N., Mohebi R., et al., (2011). "The Prevalence of ESBLs Producing Klebsiella pneumoniae Isolates in Some Major Hospitals, Iran". The Open Microb. J., 5: 91–95.

27. Schito G.C., Naber K.G., Botto H., Polou J., et al., (2009). "The ARESC (Antimicrobial Resistance Epidemiological Survey on Cystitis) Study: An International Survey on the Antimicrobial Resistance of Pathogens involved in Uncomplicated Urinary Tract Infections". Intern. J. Antimic. Ag., 34 (5): 4–12.