A New Parameterized Conjugate Gradient Method based on Generalized Perry Conjugate Gradient Method

Main Article Content

Khalil K. Abbo
Nazar K. Hussein

Abstract

A New Parameterized Conjugate Gradient Method based on Generalized Perry Conjugate Gradient Method is proposed to be based on Perry's idea, the descent condition and the global convergent is proven under Wolfe condition. The new algorithm is very effective for solve the large-scale unconstrained optimization problem

Article Details

How to Cite
Khalil K. Abbo, & Nazar K. Hussein. (2023). A New Parameterized Conjugate Gradient Method based on Generalized Perry Conjugate Gradient Method. Tikrit Journal of Pure Science, 21(1), 102–106. https://doi.org/10.25130/tjps.v21i1.958
Section
Articles

References

1. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–439 (1952)

2. Fletcher, R.M., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

3. Polak, E., Ribière, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inform. Rech. Oper. 3(16), 35–43 (1969)

5. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69, 129–137 (1991)

4. Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. 10, 177–182 (1999)

6. Liu, D.Y., Shang, Y.F.: A new Perry conjugate gradient method with the generalized conjugacy condition. In: Computational Intelligence and Software Engineering (CiSE), 2010 International Conference on Issue Date: 10–12 Dec. 2010. doi:10.1109/CISE.2010.5677114

7. Perry, A.: A modified conjugate gradient algorithm. Oper. Res., Tech. Notes 26(6), 1073–1078 (1978)

8. W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim. 16 (2005), pp. 170–192.

9. Liu, D.Y., Xu, G.Q.: A Perry descent conjugate gradient method with restricted spectrum, optimization online, nonlinear optimization (unconstrained optimization), March 2011. http://www. optimization-online.org/ DB_ HTML/ 2011/03/2958.html

10- Powell, M.J.D., (1984), Nonconvex Minimization Calculations and the Conjugate Gradient Method, Lecture Notes in Mathematics, Vol. 1066, pp. 122-141.

11- Dai, Y.H, Yuan, Y., (1999), A Nonlinear Conjugate Gradient Method with A Strong Global Convergence Property, SIAM J. Optim., 10: pp.177-182.

12- E. D. Dolan, J. J. Mor´e, Benchmarking optimization software with performance profiles, Mathematical Programming Ser. A,91(2002), 201–213.