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Abstract

In this Research we developed a New Hybrid method of conjugate gradient type, this Method depends basically
on combining Hestenes-Stiefel and Dai-Yuan algorithms by using spectral direction conjugate algorithm, which
is developed by Yang Z & Kairong W [19]. The developed method becomes converged by assuming some
hypothesis. The numerical results show the efficiency of the developed method for solving test Unconstrained

Nonlinear Optimization problems.
1- Introduction
The non-linear conjugate gradient (CG) method is a
very useful technique for solving large scale
unconstrained minimization problems and has wide
applications in many fields [11]. This method is an
iterative process which requires at each iteration the
current gradient and previous direction, which is
characterized by low memory requirements and
strong local and global convergence properties [4 and
16].

In this paper, we focus on conjugate gradient
methods applied to the non-linear unconstrained
minimization problem:

min f(x), xeR"... (1)
Where f:R" R is continuously differentiable

function and bounded below. A conjugate gradient
method generates a sequence X, k>1 starting from

an initial guess x €R" using the recurrence
X=X +ad ..

Where the positive step size ¢, is obtained by a line

k+1

search, and the directions dk are generated by the
rule:

d,=-9,

G =G+ A,
Where g =Vf(x,), let y, =g, —g, and
Sy =Xy — X, here g is the CG update

parameter. Different CG methods corresponding to
different choice for the parameter g see [2,5 and

12]. The first CG algorithm for non-convex problems
was proposed by Fletcher and Revees(FR) in 1964
[13], which defined as
ngngrl
e N )
9.9,
We know that the other equivalents forms for ,Bk

are Polack-Ribeir (PR) and Hestenes- Stiefel (HS) for
example

®)

and

.
PR — gk+1yk and HS _ g;ﬂyk (5)
k T ) kK :
9. 9, d;y,
Although all the above formulas are equivalent for

convex quadratic functions, but they have different
performance for non-quadratic functions, the
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performance of a non-linear CG algorithm strongly
depends on coefficient ,Bk. Dai and Yuan (DY) in

[7] proposed a non-linear CG method (2) and (3) with
L, defined as

T
DY _ gk+1gk+l
= T e (6)

k yk

Which generates a descent search directions

d/g,<0. ... (0

At every iteration k and convergence globally to the
solution if the following standard Wolfe conditions

are used to accept the step-size ¢, [3]:
f(xk+akdk)g f(xk)+clakg:dk“' (8)
g(xk+akdk)TdeCZg:dk”' (9)

Where 0<c <c,<1. Condition (8) stipulates a
decrease of f along dk if (7) satisfied. Condition
(9) is called the curvature condition and it's role is to
force ¢r, to be sufficiently far a way from zero [16].

Which could happen if only condition (8) were to be
used. Conditions (8) and (9) are called standard
Wolfe conditions (SDWC). Notice that if equation (8)

satisfied then always there exists ¢ >0 such that for

any «, €[0, o_z] the conditions (8) and (9) will be
satisfied according to the theorem (1) given later. If
we wish to find a point ¢, , which is closer to a
solution of the one dimensional problem
I\{leorl(;ﬁ(a):nlipf (X +ad,) - (10)

Than a point satisfying (8) and (9) we can impose on
Q, the strong Wolfe conditions (STWC):

11)

(12)

In contrast to (SDWC)

f(Xk "_Olkdk)S f(xk)+clakg:dk
‘g(xk +akdk)Tdk‘ < Cz‘g:dk‘”“

Where 0<c, <c, <1.

g:ﬂdk cannot be arbitrarily large [16]. The
(STWC) with the sufficient descent property
d/g,<-clg,. ce(©) - (13)

Widely used in the convergence analysis for the CG
methods.
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Theorem (1)
Assume that f is continuously differentiable and

that is bounded below along the line x=x, +a d, .

o €(0,00). Suppose also that dk is a direction of

descent (7) is satisfied if 0 <C, <C, <1 then there

exist nonempty intervals of step lengths satisfying the
(SDWC) and (STWC) conditions, For proof see [16].
The Fletcher-Revees (FR) and Dai-Yuan (DY)

methods have common numerator g, .g,,, - One
theoretical difference between these methods and
other choices for the update parameter ﬂk is that the

global convergence theorems only require the
Lipschitz assumption not the bounded ness
assumption [11].

The global convergence for the methods with
g:ﬂgk+l in the numerator of ,Bk established with

exact and inexact line searches for general functions
[3,8 and 20]. Despite the strong convergence theory

that has been developed for methods with g, .g, , in

the numerator of ﬁk, these methods are all

susceptible to jamming, that is they begin to take
small steps without making significant progress to the
minimum [11]. On the other hand the convergence of

the methods with g, y, in the numerator (PR) and

(HS) for general non-linear function are uncertain, in
general the performance of these methods is better

than the performance of the methods with 9:+19k+1 in

the numerator of ﬂk see [11], but they have weaker

convergence theorems.

This paper is organized as follows in section 2 New
A hybrid conjugate gradient algorithm for
unconstrained optimization. In section 3 we will show
that our algorithm satisfies descent condition for
every iteration. Section 4 we will show that our
algorithm satisfies Global convergence condition for
every iteration. Section 5 presents numerical
experiments and comparisons.

2- New A hybrid conjugate gradient algorithm for
unconstrained optimization

In this section, we derive New A hybrid conjugate
gradient algorithm for unconstrained optimization.
Based on combining Hestenes-Stiefel and Dai-Yuan
algorithms by using direction conjugate algorithm.
We know the direction formula

dk+1:_gk+1+ﬁk+1dk - (14)
Hestenes-Stiefel algorithm
i _ QY ... (15)
CH
Dai-Yuan algorithm
2
or _9ca ....(16)
CYd,
Suppose that
ﬁk+1 ﬂﬂm ”"(17)
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:Bk+1 Uﬂk+1 (l_ﬂ)ﬁkal .- (18)
dk+1:_gk+1+77ﬂkHs -.-(19)
Ao =—0.+ @B + (1 mpEd, - (20)

Equality of equation (19) with (20) and note of the
d, equal in equations (19) and (20) we get

—Oat nﬁkaldk =—0i.t (Uﬂk MR (S U)ﬂkal)dk
...(21)

Subtracting the ¢, ,, of two said from above
equation we have

Uﬂkald = (U:Bk 5 +Hd- U)ﬂk +1)d -(22)
After some algebra, we get
- Bl 23
Zﬂk a1 k +1

Substituting 7] in the equation (20)

qul ﬂk +1. k+1 (1_ kH+S1 ) ﬁk A

" Zﬂk a1 k+l Zﬁk a7 k+l "

(24)

After some algebra of above equation we get a new
formula denote by 1" is defined by

(gk+1yk)2 .. (25)

2
A7y 90aY . —[9ua])
Substituting above equation in spectral direction
conjugate algorithm, which is developed by Yang Z
& Kairong W [19]. There for we have

KH1 _
k+1

d/ .. (26
= (f ﬂkKﬂlH kykz)gk+1+ﬂszldk (20)
k +1
New Algorithm KH 1
Step 1. Initialization. Select x,eR" and the
parameters 0 < & <1.
Compute f (X,) and Q,. Consider d,=-g, and

set the initial

guess o, :1/H91H .
Step 2. Test for continuation of iterations.
HgMH <10°¢, then stop.

If

Step 3. Line search. Compute a,.,>0 satisfying the

Wolfe line search

condition (11) and (12) and update the
variablesx 2 =X, +akdk.
Step 4. ﬂKHl conjugate gradient parameter which
defined in (25) and (26).

Step 5.  Direction new computation, Compute
d; . If the
=g+, + A,

‘ k+1

. ,
restart criterion of Powell ‘gzﬂgk‘zo_zugm , s

satisfied, thenset d, . =-q, ,
Otherwise define d,

initial guess ¢, =g | |d, |

continue with step2 .

+1:d' Compute the
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3- The Descent Property of the New Method
Below we have to show the descent property for our
proposed a hybrid conjugate gradient algorithm,

denoted by /3"*. In the following Theorem.

Theorem (2)
suppose that 297 .Y, _Hgk 1H2 > (O then the search

direction d, , and B}* given in equation
dly
_(é: ﬁkKEl “ k2)gk+1+ kKE k
195
**)
Will hold for all k >1
Proof:-

The proof is by induction.
1-Ifk=1then g/d, <0 d, =—g, —><0-.
Since it by assumption 297 'y, _H9k+1H2 >0 then

KH150 there for dTy, >0 by standard Wolfe

conditions.
2- Let the relation gldk <( forall K .

3- We prove that the relation is true when
K =K +1 by multiplying the equation (**) in
g, ., Weobtain

KH1 d;yk T KH1
gk+1 k41 = -(+8 Bia ‘ Hz)gk+19k+1 K+ gk+1d
k+1
.27
T
g.l[+1dk+1 é:gkﬂgkﬂ ngl kykz)glﬂgkﬂ+ﬁkK+qlgI+1dk
k+1
.- (28)
gk+l k+1 ggkﬂgkﬂ ﬁngldTyk +ﬂkKEllgk+1

...(29)

After some algebra, we get
KH1

9“1381 60090~ B 08 9 T AL 009, + A0,
gk;lg;;l égkﬂgkﬂ ﬂngidTgkﬂ-I—IBszldTgk-l— kKJ:lngrld
Or.des=—¢0¢,0, .+ A51d{ 0, <O ... (32)

<0 i 33
ﬁkélﬁ)kbgl C(?nvergence anaI)(/sis)
Ne}zﬁl we will show that CG method with

| converges globally. We need the following
assumptlon for the convergence of the proposed new
algorithm.

Assumption (1)

1-Assume f is bound below in the level set
S :{x eR":f (x)<f (xo)}? In some Initial point.
2-f is continuously differentiable and its gradient is
Lipshitz continuous, there exist L >0 such that:
lax)—g(y)|<L|x —y| vxyeN --.(34)

3- f is uniformly convex function, then there exists a
constant ¢ >0 such that
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(VE (x) = VI (y)) (x y[,foranyx,y €S

...(35)

or equivalently
2

ylsk Z,UHSk H

(36)

On the other hand, under Assumption(1), It is clear

that there exist positive constants B such

-y)>

and pfs, [ <yls, <L]s,[

[x[|<B ,vx eS - (37)
[V ()<, vx eS - (38)
Lemma(1)

Suppose that Assumption (1) and equation (37) hold.
Consider any conjugate gradient method in from (2)

and (3), where dk is a descent direction and ¢, is

obtained by the strong Wolfe line search. If
1 o (39)

k>1 d

k+lH
then we have

jimint g, 0

More details can be found in [1,9 and 14].

Theorem (3)

Suppose that Assumption (1) and equation (37) and
the descent condition hold. Consider a conjugate
gradient method in the form

dr
k+1:_(9E ﬂkKEl Y )gk+1+:BkK+H11dk

2

‘ k+1

where ¢, is computed from Wolfe line search

>0,
If the objective function is uniformly on set S, then
liminf g, | =0

Proof:-

Firstly, we need substituting our new g*%*, in the
direction dI<+1 there for we obtain

condition (11) and (12) with 297 |y, — Hg o

dg 40
__(é: IBkKrjli_:L kykZ)gk+l+ kKE k ( )
k +1
After simplify above equation we get
dr
_églu-l_ ngl kykz k+1 kKE k
|94
(41)
dT
k+l égkﬂ ﬂkK:l'l( yk2 k +1 d )
H k+1
(42)
2
k = fgk 1_ﬁkKHll( Kk ykgk+1_Hgk+1H dk)
94l
...(43)
2
dk+12:_§gk+1_ szl( ky gkﬂ Hgkﬂ k)
H k+1
...(44)
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(4

‘gk+l

2

KH1
k+1

(dl;rykgkﬂ._‘

de)
Hgk+1

ool <&loual +
5)

Using Chouchy Schwartez inequality together with
equation (37) we get

ldcal <&l + AN

...(46)

ld, ol <&l + AL +) ---(4T)
By using Assumption(1) we get

Hdk+1H2 S§72 +CﬂkKJ:1(L +1) (48)

L0 e al + gl J0uTy
|9,

Hdkﬂzﬁu—iz ...(49)
Y
o1 1= ...(50)
>= 1=
2,
By using Lemma (1) then we get
1@“9kH:0 ....(51)

5- Numerical results and comparisons
In this section, we compare the performance of new
formal g+ developed a New Hybrid method of

k+1
conjugate gradient method to other classical
conjugate gradient method (Hestenes-Stiefel and Dai-
Yuan algorithms). we have selected (20) large scale
unconstrained optimization problem, for each test
problems taken from (Andrie, 2008) [6]. For each test
function we have considered numerical experiments
with the number of variables n =100 ,..., 1000.

These two new versions are compared with well-
known conjugate gradient algorithm, the Hestenes-
Stiefel and Dai-Yuan algorithms. All these algorithms
are implemented with standard Wolfe line search
conditions (11) and (12) with. In all these cases, the
stopping criteria is the|g,[=10"°. All codes are

written in doble precision FORTRAN Language with
F77 default compiler settings. The test functions
usually start point standard initially summary
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numerical results recorded in the figures
(1),(2),(4),(3). The performance profile by Dolan and
More” [10] is used to display the performance of the
developed a New Hybrid method of conjugate
gradient algorithm with Hestenes-Stiefel and Dai-
Yuan algorithms. Define p =200 as the whole set of

np test problems and S =3 the set of the interested
solvers. Let | b be the number of objective function

evaluations required by solver S
Define the performance ratio as

:ILS ....(52)
p.s I

for problemp .

r

p
Where I;:min{lp,s:s eS}. It is obvious that

r.=1 for all P,S . If a solver fails to solve a

problem, the ratio I is assigned to be a large

p.,Ss
number M . The performance profile for each solver
S is defined as the following cumulative distribution

function for performance ratio I"IO s

o (T):size{p ePir, <7} . (53)

n
Obviously,

p

P, (1) represents  the

problems for which solver S is the best. See [10] for
more details about the performance profile. The
performance profile can also be used to analyze the
number of iterations, the number of gradient
evaluations and the cpu time. Besides,

to get a clear observation, we give the horizontal
coordinate a log-scale in the following figures.

Note:-

1- By using wolfe conditions (11) and (12) to choose

a, [18].
2_ é:o .

percentage of

Performance based on Iteration

ossf

082

08

10

X

Figure (1). Comparison based on number of iteration for the algorithms HS, DY and KH1.
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Performance based on Functions

GE:C1S .
0.96 | ol

1 g £
--------- HS |
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08

10’ 10

X

ISSN: 1813 - 1662

Figure (2). Comparison based on number of function evaluations for the algorithms HS, DY and KH1.

Performance based on Time

075

------- HS

== KH1

10

X

Figure (3). Comparison based on time for the algorithms HS, DY and KHL1.

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
001
0.005

Time

/\‘

KH1 HS DY

—o— Vil

Figure (4). Comparison based on total time needed for solving 200 test problem .
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