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Abstract 
In this Research we developed a New Hybrid method of conjugate gradient type, this Method depends basically 

on combining Fletcher-Reeves and Polak-Ribiere algorithms by using spectral direction conjugate algorithm, 

which is developed by Yang Z & Kairong W [19]. The developed method becomes converged by assuming 

some hypothesis. The numerical results show the efficiency of the developed method for solving test 

Unconstrained Nonlinear Optimization problems. 

1- Introduction 
The non-linear conjugate gradient (CG) method is a 

very useful technique for solving large scale 

unconstrained minimization problems and has wide 

applications in many fields [11].  This method is an 

iterative process which requires at each iteration the 

current gradient and previous direction, which is 

characterized by low memory requirements and 

strong local and global convergence properties [4 and 

16].  

  In this paper, we focus on conjugate gradient 

methods applied to the non-linear unconstrained 

minimization problem:   

.   , )(  min nRxxf    ... (1) 

Where RRf n :  is continuously differentiable 

function and bounded below. A conjugate gradient 

method generates a sequence 1  , kx
k

 starting 

from an initial guess nRx 
1

, using the recurrence 

kkkk
dxx 

1
 …  (2) 

Where the positive step size 
k

  is obtained by a line 

search, and the directions 
k

d  are generated by the 

rule: 

1 1

1 1

   and

 k k k k

d g

d g d 

 

  
  …. (3) 

Where )(
kk

xfg  ,  and  let 
kkk

ggy 
1

 and  

kkk
xxs 

1
 , here 

k
  is the CG update parameter. 

Different CG methods corresponding to different 

choice for the parameter 
k

  see [2,5 and 12]. The 

first CG algorithm for non-convex problems was 

proposed by Fletcher and  Revees(FR) in 1964 [13], 

which defined as 

.11

k

T

k

k

T

kFR

k
gg

gg
   … 

(4) 

We know that the other equivalents forms for 
k

   are 

Polack-Ribeir (PR) and Hestenes- Stiefel (HS) for 

example 

.1

k

T

k

k

T

kPR

k
gg

yg
     and     .1

k

T

k

k

T

kHS

k
yd

yg
 …. (5) 

Although all the above formulas are equivalent for 

convex quadratic functions, but they have different 

performance for non-quadratic functions, the 

performance of a non-linear CG algorithm strongly 

depends on coefficient 
k

 . Dai and Yuan (DY) in 

[7] proposed a non-linear CG method (2) and (3) with 

k
  defined as 

.11

k

T

k

k

T

kDY

k
yd

gg


… 
(6) 

Which generates a descent search directions  

    .0  
k

T

k
gd    (7) 

At every iteration k and convergence globally to the 

solution if the following standard Wolfe conditions 

are used to accept the step-size 
k

  [3]: 

k

T

kkkkkk
dgcxfdxf 

1
)()(  … (8) 

k

T

kk

T

kkk
dgcddxg

2
)(  ….. (9) 

Where .1     0
21
 cc  Condition (8) stipulates a 

decrease of f  along 
k

d  if  (7) satisfied. Condition 

(9) is called the curvature condition and it's role is to 

force 
k

   to be sufficiently far a way from zero [16]. 

Which could happen if only condition (8) were to be 

used. Conditions (8) and (9) are called standard 

Wolfe conditions (SDWC). Notice that if equation (8) 

satisfied then always there exists  0
_

  such that for 

any ] ,0[
_

 
k

  the conditions (8) and (9) will be 

satisfied according to the theorem (1) given later. If 

we wish to find a point  
k

 , which is closer to a 

solution of the one dimensional problem  

0 0
( ) min (x )

k k
Min f d
 

  
 

   …  (10) 

Than a point satisfying (8) and (9) we can impose on 

k
  the strong Wolfe conditions (STWC): 

k

T

kkkkkk
dgcxfdxf 

1
)()(  … (11) 

k

T

kk

T

kkk
dgcddxg

2
    )(  …. (12) 

Where 1      0
21
 cc . In contrast to (SDWC) 

k

T

k
dg

1
 cannot be arbitrarily large [16]. The (STWC) 

with the sufficient descent property  

)1 ,0(  , .     cgcgd
kk

T

k
 …  (13) 

Widely used in the convergence analysis for the CG 

methods. 
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Theorem (1) 

  Assume that f  is continuously differentiable and 

that is bounded below along the line 
kk

dxx  ,  

),0(  . Suppose also that 
k

d  is a direction of 

descent (7) is satisfied if  1      0
21
 cc  then there 

exist nonempty intervals of step lengths satisfying the 

(SDWC) and (STWC) conditions, For proof see [16]. 

  The Fletcher-Revees (FR) and Dai-Yuan (DY) 

methods have common numerator 
11  k

T

k
gg  .  One 

theoretical difference between these methods and 

other choices for the update parameter 
k

  is that the 

global convergence theorems only require the 

Lipschitz assumption not the bounded ness 

assumption [11]. 

    The global convergence for the methods with 

11  k

T

k
gg  in the numerator of  

k
  established with 

exact and inexact line searches for  general functions 

[3,8 and 20]. Despite the strong convergence theory 

that has been developed for methods with 
11  k

T

k
gg  in 

the numerator of  
k

 , these methods are all 

susceptible to jamming, that is they begin to take 

small steps without making significant progress to the 

minimum [11]. On the other hand the convergence of 

the methods with 
k

T

k
yg

1
 in the numerator (PR) and 

(HS) for general non-linear function are uncertain, in 

general the performance of these methods is better 

than the performance of the methods with 
11  k

T

k
gg  in 

the numerator of 
k

  see [11], but they have weaker 

convergence theorems. 

 This paper is organized as follows in section 2 New 

A hybrid conjugate gradient algorithm for 

unconstrained optimization. In section 3 we will show 

that our algorithm satisfies descent condition for 

every iteration. Section 4 we will show that our 

algorithm satisfies Global convergence condition for 

every iteration. Section 5 presents numerical 

experiments and comparisons.  

2- New A hybrid conjugate gradient algorithm for 

unconstrained optimization 

In this section, we derive New A hybrid conjugate 

gradient algorithm for unconstrained optimization. 

Based on combining Fletcher-Reeves and Polak-

Ribiere algorithms by using direction conjugate 

algorithm. 

We know the direction formula 

1 1 1k k k k
d g d

  
    ….(14) 

Fletcher-Reeves algorithm 

1 1

T

k

T
FR k k
k

k

g g

g g
  

 ….(15) 

Polak-Ribiere algorithm 

1

T

k kPR

k T

k k

yg

g g
 

  ….(16) 

Suppose that 
*

1 1

PR

k k
 

 
   ….(17) 

**

1 1 1
(1 )FR PR

k k k
   

  
    ….(18) 

1 1 1

PR

k k k k
d g d

  
   …..(19) 

1 1 1 1
( (1 ) )FR PR

k k k k k
d g d  

   
     ….(20) 

Equality of equation (19) with (20) and note of the 

k
d equal in equations (19) and (20) we get  

1 1 1 1 1
( (1 ) )PR FR PR

k k k k k k k
g d g d   

    
       …..(21) 

Subtracting the 
1k

g


 of two said from above 

equation we have  

1 1 1
( (1 ) )PR FR PR

k k k k k
d d   

  
     ….(22) 

After some algebra, we get  

1

1 1
2

PR

k

PR FR

k k




 


 




…..(23) 

Substituting   in the equation (20)  

2 1 1 1
1 1

1 1 1 1

(1 )
2 2

PR FR PR
KH PRk k k
k kPR FR PR FR

k k k k

  
 

   
  

 

   

  
 

 …..(24) 

After some algebra of above equation we get a new 

formula denote by 2

1

KH

k



  is defined by 

2
2 1

21

1 1

( )

(2 )

T
KH k k
k T T

k k k k k

g y

g g g y g
 



 




…..(25) 

Substituting above equation in spectral direction 

conjugate algorithm, which is developed by Yang Z  

& Kairong W [19]. There for we have  

2 2

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

   



   
 ….(26) 

 New Algorithm 2KH    

Step 1. Initialization. Select 
1

nx R  and the 

parameters 0 1  . 

  Compute 
1

( )f x  and 
1

g . Consider 
1 1

d g  and 

set the initial  

            guess 
1 1

1/ g  . 

Step 2. Test for continuation of iterations. If 
6

1
10

k
g 


 , then stop.  

Step 3. Line search. Compute 
1

0
k



  satisfying 

the Wolfe line search 

            condition (11) and (12) and update the 

variables
1k k k k

x x d

  . 

Step 4.  
2

1

KH

k



 conjugate gradient parameter which 

defined in (25) and  

               (26).  

Step 5.  Direction new computation, Compute 

2 2

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

   



    . If the 

restart criterion of Powell 2

1 1
0.2T

k k k
g g g

 
 , is 

satisfied, then set 
1 1k k

d g
 
    

              Otherwise define 
1k

d d

 . Compute the 

initial guess 
1 1

/ ,
k k k k

d d 
 

  set 1k k   and 

continue with step2 . 

3- The Descent Property of the New Method 
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Below we have to show the descent property for our 

proposed A hybrid conjugate gradient algorithm, 

denoted by 2

1

KH

k



. In the following Theorem. 

Theorem (2)  

suppose that 2

1 1
2 0T

k k k
g y g

 
   then the search 

direction 
1k

d


 and 2

1

KH

k



 given in equation 

2 2

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

   



       

…..(**) 

Will hold for all 1k   

Proof:- 

The proof is by induction.  

1- If k=1 then 2

11 1
0T gg d    . 

Since it by assumption 2

1 1
2 0T

k k k
g y g

 
   then 

2

1
0KH

k



  there for 0T

k k
d y   by standard Wolfe 

conditions. 

2- Let the relation 0T

k k
g d   for all k . 

3- We prove that the relation is true when 1k k   

by multiplying the equation (**) in 
1k

g


 we obtain  

2 2

21 1 1 1 1 1 1

1

( )
T

T KH T KH Tk k
k k k k k k k k

k

d y
g d g g g d

g
  

      



   
  

….(27) 

2 2

21 1 1 1 1 1 1 1 1

1

( )
T

T T KH T KH Tk k
k k k k k k k k k k

k

d y
g d g g g g g d

g
  

        



   
  

… (28) 
2 2

1 1 1 1 1 1 1

T T KH T KH T

k k k k k k k k k k
g d g g d y g d  

      
    …(2

9) 

After some algebra, we get  
2 2 2

1 1 1 1 1 1 1 1 1

T T KH T KH T KH T

k k k k k k k k k k k k k
g d g g d g d g g d   

        
      

…(30) 
2 2 2

1 1 1 1 1 1 1 1 1

T T KH T KH T KH T

k k k k k k k k k k k k k
g d g g d g d g g d   

        
       

…(31) 
2

1 1 1 1 1
0T T KH T

k k k k k k k
g d g g d g 

    
      … (32) 

1 1
0T

k k
g d

 
   ….(33) 

4- Global convergence analysis 

Next we will show that CG method with 
2

1

KH

k



converges globally. We need the following 

assumption for the convergence of the proposed new 

algorithm. 

Assumption (1) 

1-Assume f  is bound below in the level set 

 : ( ) ( )nS x R f x f x   ;  In some  Initial point.  

2- f  is continuously differentiable and its gradient is 

Lipshitz continuous, there exist  0L   such that: 

( ) ( )    x,y Ng x g y L x y     …(34) 

3- f is uniformly convex function, then there exists a 

constant 0   such that 

   
2

,( ) ( )  , for any 
T

x y Sf x f y x y x y       

…(35) 

or equivalently 
2 2 2

   and    T T

k k k k k k k
y s s s y s L s     … (36) 

On the other hand, under Assumption(1), It is clear 

that there exist positive constants B such  

  , x B x S    …(37) 

( )   , f x x S    ….(38) 

Lemma(1) 

Suppose that Assumption (1) and equation (37) hold. 

Consider any conjugate gradient method in from (2) 

and (3), where 
k

d  is a descent direction and 
k

  is 

obtained by the strong Wolfe line search. If 

2
1

1

1

k
k

d



  ….(39) 

then we have 

liminf 0 
kk

g


        

More details can be found in [1,9 and 14]. 

Theorem (3) 

Suppose that Assumption (1) and equation (37) and 

the descent condition hold. Consider a conjugate 

gradient method in the form 

2 2

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

   



   
 

 where 
k

  is computed from Wolfe line search 

condition (11) and (12) with 2

1 1
2 0T

k k k
g y g

 
  , If 

the objective function is uniformly on set S, then 
 liminf 0 .

kn
g


  

Proof:- 

Firstly, we need substituting our new
2

1

KH

k



, in the 

direction 
1k

d


 there for we obtain  

2 2

21 1 1 1

1

( )
T

KH KHk k
k k k k k

k

d y
d g d

g
  

   



     …(40) 

After simplify above equation we get 

2 2

21 1 1 1 1

1

T
KH KHk k

k k k k k k

k

d y
d g g d

g
  

    



   
….(41) 

2

21 1 1 1

1

( )
T

KH k k
k k k k k

k

d y
d g g d

g
 

   



   
 ….(42) 

2

1 12

21 1 1

1

( )
T

k k k k kKH

k k k

k

d y g g d
d g

g
   

  




  

 …..(43) 

2
2

2 1 12

21 1 1

1

( )
T

k k k k kKH

k k k

k

d y g g d
d g

g
   

  




  

 ….(44) 

2
2

2 2 1 12

21 1 1

1

( )
T

k k k k kKH

k k k

k

d y g g d
d g

g
   

  




 

 

…..(45) 

Using Chouchy Schwartez together with inequality 

(37) we get  
2 2 2 2

2 2 1 12

21 1 1

1

( )k k k kKH

k k k

k

L d g g d
d g

g
   

  




 

 

….(46) 
2 2 2

1 1 1
( )KH

k k k
cL cd g 

  
   ….(47) 
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By using Assumption(1) we get  
22 2

1 1
1 ( )KH

k k
Ld c 

 
   ….(48) 

2

21

1

 
k

d u





 ….(49) 

2

2
1 1

1 1
1

k k
k

ud




 

  
 ….(50) 

By using Lemma (1) then we get 

lim 0
kk

g


   … (51) 

5- Numerical results and comparisons  

In this section, we compare the performance of new 

formal 2

1

KH

k



  developed a New Hybrid method of 

conjugate gradient method to other classical 

conjugate gradient method (Fletcher-Reeves and 

Polak-Ribiere algorithms). we have selected (20) 

large scale unconstrained optimization problem, for 

each test problems taken from (Andrie, 2008) [6]. For 

each test function we have considered numerical 

experiments with the number of variables 

1000 ,..., 10000n  . These two new versions are 

compared with well-known conjugate gradient 

algorithm, the Fletcher-Reeves and Polak-Ribiere 

algorithms. All these algorithms are implemented 

with standard Wolfe line search conditions (11) and 

(12) with. In all these cases, the stopping criteria is 

the
610kg . All codes are written in doble 

precision FORTRAN Language with F77 default 

compiler settings. The test functions usually start 

point standard initially summary numerical results 

recorded in the figures (1),(2), (4) , (3) . The 

performance profile by Dolan and More´ [10] is used 

to display the performance of the developed a New 

Hybrid method of conjugate gradient algorithm with 

Hestenes-Stiefel and Dai-Yuan algorithms. Define 

200p   as the whole set of 
pn  test problems and 

3S   the set of the interested solvers. Let 
,p sl  be 

the number of objective function evaluations required 

by solver s  for problem p . Define the 

performance ratio as 

,

, *

p s

p s

p

l
r

l
  ….(52) 

Where *

,min{ : }p p sl l s S  . It is obvious that 

, 1p sr    for all ,p s . If a solver fails to solve a 

problem, the ratio 
,p sr  is assigned to be a large 

number M . The performance profile for each solver 

s  is defined as the following cumulative distribution 

function for performance ratio 
,p sr ,  

,{ : }
( ) p s

s

p

size p P r

n


 

 


    ….(53) 

Obviously, (1)sp represents the percentage of 

problems for which solver s  is the best. See [10] for 

more details about the performance profile. The 

performance profile can also be used to analyze the 

number of iterations, the number of gradient 

evaluations and the cpu time. Besides, 

to get a clear observation, we give the horizontal 

coordinate a log-scale in the following figures.  

Note:- 

1- By using wolfe conditions (11) and (12) to choose 

k
 [18]. 

2- 0.1   . 

 

 
Figure (1). Comparison based on number of iteration for the algorithms FR, PR and KH2. 
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Figure (2). Comparison based on number of function evaluations for the algorithms FR, PR and KH2. 

 

 

 
Figure (3). Comparison based time for the algorithms FR, PR and KH2. 

 

 

 
Figure (4). Comparison based on total time needed  for solving 200 test problem . 
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 في التدرج المترافق  ريبير-بولاكريفيس و -فليتشيربين  خوارزمية جديدة مهجنة

 في الامثلية غير المقيدة

 خليل خضر عبو ، هشام محمد خضر
 قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل ، الموصل ، العراق

 

 الملخص
ريفيس -فليتشيرخوارزميات  تهجين عتمد هذه الطريقة في الأساس علىتو  .التدرج المترافق الهجينةطريقة جديدة من طرائق  تطويرفي هذا البحث تم 

والطريقة المطورة ذات تقارب  .Yang Z & Kairong W [19] المطورة من قبلبأستخدام خوارزمية متجهات مترافقة طيفية ذلك و  .ريبير-بولاكو 
 . وأشارت النتائج العددية الى كفاءة هذه الطريقة في حل دوال الاختبار اللاخطية في الامثلية غير المقيدة المعطى.   شامل تحت فرضيات معينة

 


