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Abstract

In this Research we developed a New Hybrid method of conjugate gradient type, this Method depends basically
on combining Fletcher-Reeves and Polak-Ribiere algorithms by using spectral direction conjugate algorithm,
which is developed by Yang Z & Kairong W [19]. The developed method becomes converged by assuming
some hypothesis. The numerical results show the efficiency of the developed method for solving test

Unconstrained Nonlinear Optimization problems.

1- Introduction
The non-linear conjugate gradient (CG) method is a
very useful technique for solving large scale
unconstrained minimization problems and has wide
applications in many fields [11]. This method is an
iterative process which requires at each iteration the
current gradient and previous direction, which is
characterized by low memory requirements and
strong local and global convergence properties [4 and
16].

In this paper, we focus on conjugate gradient
methods applied to the non-linear unconstrained
minimization problem:

min f(x), xeR". .. (1)
Where f:R" R is continuously differentiable

function and bounded below. A conjugate gradient
method generates a sequence X, , k>1 starting
from an initial guess x, € R", using the recurrence
X=X tad, . @

Where the positive step size ¢, is obtained by a line

search, and the directions dk are generated by the
rule:

d,=-g, and
dk+1=_gk+1+ﬂkdk
Where g =Vf (Xk) ! let Y = Gt — i and
S, =X, — X, here S isthe CG update parameter.

Different CG methods corresponding to different
choice for the parameter [ see [2,5 and 12]. The
first CG algorithm for non-convex problems was
proposed by Fletcher and Revees(FR) in 1964 [13],
which defined as

3)

and

FR g;(r+lgk+1
B == 4
N “

We know that the other equivalents forms for 3 are

Polack-Ribeir (PR) and Hestenes- Stiefel (HS) for
example

PR _ gIJrlyk HS _ g;ﬂYk
o=k o= 2ede e (5)
gk gk dk yk
Although all the above formulas are equivalent for
convex quadratic functions, but they have different
performance for non-quadratic functions, the

and
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performance of a non-linear CG algorithm strongly
depends on coefficient ,Bk. Dai and Yuan (DY) in
[7] proposed a non-linear CG method (2) and (3) with
P, defined as

o _ Gealis .
gy, ©

Which generates a descent search directions
dig,<0. (@

At every iteration k and convergence globally to the
solution if the following standard Wolfe conditions

are used to accept the step-size &, [3]:

f(x, +ad)< f(x)+ce0,d, - (8)

g(x, +,d,)"d, >c,g.d, ... 9)

Where 0<c, <c, <1. Condition (8) stipulates a
decrease of f along d, if (7) satisfied. Condition
(9) is called the curvature condition and it's role is to
force ¢r, to be sufficiently far a way from zero [16].

Which could happen if only condition (8) were to be
used. Conditions (8) and (9) are called standard
Wolfe conditions (SDWC). Notice that if equation (8)

satisfied then always there exists ¢ >0 such that for
any o, €[0, a] the conditions (8) and (9) will be

satisfied according to the theorem (1) given later. If
we wish to find a point ¢, , which is closer to a

solution of the one dimensional problem

Min () =minf (x, +od,) -+ (10)

Than a point satisfying (8) and (9) we can impose on
Q, the strong Wolfe conditions (STWC):

f(x, +d)<f(x)+ce0,d, - (11)

9(x, +a,d,)7d,| < cjg/d,| - (12)

Where 0<cC, <C,<1. In contrast to (SDWC)
ng+1dk cannot be arbitrarily large [16]. The (STWC)
with the sufficient descent property

dig,<-cfg,], ce(01) ... (13)

Widely used in the convergence analysis for the CG
methods.
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Theorem (1)
Assume that f is continuously differentiable and

that is bounded below along the line x = X +a dk,

o €(0,00). Suppose also that dk is a direction of

descent (7) is satisfied if 0<c, <c, <1 then there

exist nonempty intervals of step lengths satisfying the
(SDWC) and (STWC) conditions, For proof see [16].
The Fletcher-Revees (FR) and Dai-Yuan (DY)

methods have common numerator ggﬂgk+l . One

theoretical difference between these methods and
other choices for the update parameter /3 is that the

global convergence theorems only require the
Lipschitz assumption not the bounded ness
assumption [11].

The global convergence for the methods with
0,9, in the numerator of A established with

exact and inexact line searches for general functions
[3,8 and 20]. Despite the strong convergence theory

that has been developed for methods with 9:+19k+1 in
the numerator of B these methods are all

susceptible to jamming, that is they begin to take
small steps without making significant progress to the
minimum [11]. On the other hand the convergence of
the methods with g/ y, in the numerator (PR) and

(HS) for general non-linear function are uncertain, in
general the performance of these methods is better

than the performance of the methods with 9:+19k+1 in
the numerator of 3 see [11], but they have weaker

convergence theorems.

This paper is organized as follows in section 2 New
A hybrid conjugate gradient algorithm for
unconstrained optimization. In section 3 we will show
that our algorithm satisfies descent condition for
every iteration. Section 4 we will show that our
algorithm satisfies Global convergence condition for
every iteration. Section 5 presents numerical
experiments and comparisons.

2- New A hybrid conjugate gradient algorithm for
unconstrained optimization

In this section, we derive New A hybrid conjugate
gradient algorithm for unconstrained optimization.
Based on combining Fletcher-Reeves and Polak-
Ribiere algorithms by using direction conjugate
algorithm.

We know the direction formula

dk+l =0y +ﬂk+1dk -(14)
Fletcher-Reeves algorithm
m _ Oindia -..(15)
k
9 9y
Polak-Ribiere algorithm
r_ OeaY ....(16)
k T
9,9
Suppose that

Bia=nB% - -(17)
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Bro=npT +1-n) ﬂk < ....(18)
dk+1__gk+1+77ﬂk (19)
dea==0 .+ B+ (1 mped, - ...(20)

Equality of equation (19) with (20) and note of the
d . equal in equations (19) and (20) we get
_gk+1+77ﬂ:)f1 gk+1+(77ﬁk+1+(1 ) k+1) k (1)
Subtracting the ¢, , of two said from above
equation we have

’Iﬂkpfld = (’Iﬂkal +(1- U)ﬂk +1)d

After some algebra, we get
PR

..(22)

+ ..(23)
n= k+1
2ﬂk+l k+]_
Substituting 5 in the equation (20)
PR
iz _ Beab M 1- T .....(24)
- Zﬂk T k+1 + ( ZlBkal kal)ﬁk .

After some algebra of above equation we get a new
formula denote by "2 is defined by

(9raY)’ --(29)

gI g (Zglﬂyk _Hgk+1 2)
Substituting above equation in spectral direction
conjugate algorithm, which is developed by Yang Z
& Kairong W [19]. There for we have

KH2 _
k+ T

d, ...(26
= (§ ﬂkKEZH kykZ)gk+1+ kK:2 k ( )
k+1
New Algorithm KH 2
Step 1. Initialization. Select X, e R" and the

parameters 0 < £ <1.
Compute f (X,) and g,. Consider d, =—@, and
set the initial
ouess 1/,
Step 2. Test for continuation of iterations.
|9, . <107, then stop.

If

Step 3. Line search. Compute &, ., > 0 satisfying

the Wolfe line search
condition (11) and (12) and update the

variablesxk 0 =X, +akdk.

Step 4. SB1? conjugate gradient parameter which
defined in (25) and
(26).
Step 5. Direction new computation, Compute
dey If the
(§ IBkKIJ'_2 : kZ)gk+1+ kKHZ k
|94
2 is

restart criterion of Powell ‘glﬂgk‘ZO.ZHgM

satisfied, thenset d  =-g, ,
Otherwise define d, =0. Compute the
initial guess ¢ =0‘HHdHH/HdkH, set kK =k +1 and

continue with step2 .
3- The Descent Property of the New Method
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Below we have to show the descent property for our
proposed A hybrid conjugate gradient algorithm,
denoted by B"'?. In the following Theorem.

Theorem (2)
suppose that 207 .Y, _HgMHZ > (0 then the search

direction d

;
e ﬁkﬁzd“ykz

H k+1

,and B2 given in equation

KH 2,
k+1

)gk+l+

k

(%)

Will hold forall K >1
Proof:-

The proof is by induction.
1-Ifk=1then grqg, =—|g,f <O-

Since it by assumption 297 .Y, _HQMZ
>0 by standard Wolfe

>0 then

<1250 there for dTyk
condltlons.
2- Let the relation g.d, <0 forall K .

3- We prove that the relation is true when k =k +1
by multiplying the equation (**) in g, , we obtain

07 0y =&+ g I ygr g 1 gotigr g,
.27

9l =—£0].9,..~ (B kﬁ“fHdlykz)glﬂgm+ﬂkﬁ“fglﬁdk
.. (28) e

gkﬁ 1 ==80010a — ALY, + A0 gd, (2

9)
After some algebra, we get

gk+1 k+1 fgkﬁgkﬂ ﬁlf-:szgkA-I_ﬂkJ:degk +ﬂkK-Hzgk+1
.-(30)

gw k1 =60k a0~ Ba di 9 + B0 G, + A8 Ok,
-.-(31)

gk+1 kel = (szgkugkﬂ"‘ kK+q2dTgk <0 "‘(32)

gk+ldk+1<0 (33)

4- Global convergence analysis

Next we will show that CG method with

B2 converges globally. We need the following

assumption for the convergence of the proposed new
algorithm.

Assumption (1)

1-Assume f is bound below in the level set
S :{x eR":f (x)<f (Xo)}; In some Initial point.
2-f s continuously differentiable and its gradient is
Lipshitz continuous, there exist L >0 such that:
lac)-g(y)<Lx -y| vxyeN--(4)

3- f is uniformly convex function, then there exists a
constant 4L > O such that

(VE (x)=Vf (y)) (x -
...(35)

or equivalently

yis.zufs, [

vy, foranyx,y €S

and  ufs, | <yrs, <Ls,| - (36)
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On the other hand, under Assumption(1), It is clear
that there exist positive constants B such

[x|<B ,vxeS (7
[VE 0O|<y , vx €S ---(38)
Lemma(l)

Suppose that Assumption (1) and equation (37) hold.
Consider any conjugate gradient method in from (2)
and (3), where dk is a descent direction and a, is

obtained by the strong Wolfe line search. If
1 (39)

—o0

k>1 d

k+lH
then we have

E‘L‘?J”ngkH=°

More details can be found in [1,9 and 14].

Theorem (3)

Suppose that Assumption (1) and equation (37) and
the descent condition hold. Consider a conjugate
gradient method in the form

dT
——(¢+ AT,
|94
where ¢, is computed from Wolfe line search

condition (11) and (12) with 297 .Y, _HgmHz >0, If

KH 2
k+1 d

the objective function is uniformly on set S, then
liminf g, | =0
Proof:-

. I KH2 .
Firstly, we need substituting our new,Bk 41 o Inthe

direction d

k4l = _(é:
|94

After simplify above equation we get
dT
k+1=_'§gk+1_ 0 kyk

k+1

K+l there for we obtain

...(40)
k

KH 2,
k +1

dT
ﬁkKEZ kyk )gk+l+

2

..(41)

k

KH 2
k+1

2 Jk+

H k+1
T
k+1=_§gk+1_ﬂkl<+'—1|z(dkyk (42)

4

2 Jk+

H k+1

égk.,.]__ﬂkKﬂz( ky gk+1 Hgk+1

H k+l

dTy gk+1 Hgk+1

H k+1

(ky gk+1 ‘

H k+1

-(43)

)

k+1

© L (44)

Hdk+l

= _éggku —ﬁkKﬂz(

‘gkﬁ

KH 2
k+1

“)

Hdk+1 ’ S§H9k+l ’ +

.....(45)
Using Chouchy Schwartez together with inequality
(37) we get

d, |f § 21 [
Hdk+1H <§Hgk+1H +ﬁkKH2( H kH Hgk+1 +ng+1 H kH)
k+1
...(46)
ld, ol <&, + B2 L +c) ---(4D)
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By using Assumption(1) we get

2 2
Hdk+1H <&y T+ BEA(L +D) ---(48)
1 ....(49)
HdkﬂHzgujz
z 1 —2 .(50)
2277 Z].:OO
[ Tu”

By using Lemma (1) then we get
!iﬂHQkHZO ... (1)

5- Numerical results and comparisons
In this section, we compare the performance of new
formal B<"? developed a New Hybrid method of

k+1
conjugate gradient method to other classical
conjugate gradient method (Fletcher-Reeves and
Polak-Ribiere algorithms). we have selected (20)
large scale unconstrained optimization problem, for
each test problems taken from (Andrie, 2008) [6]. For
each test function we have considered numerical
experiments with the number of variables
n =1000,..., 10000. These two new versions are

compared with well-known conjugate gradient
algorithm, the Fletcher-Reeves and Polak-Ribiere
algorithms. All these algorithms are implemented
with standard Wolfe line search conditions (11) and
(12) with. In all these cases, the stopping criteria is

the||gk||:10_6. All codes are written in doble

precision FORTRAN Language with F77 default
compiler settings. The test functions usually start
point standard initially summary numerical results
recorded in the figures (1),(2),(4),(3). The
performance profile by Dolan and More” [10] is used
to display the performance of the developed a New
Hybrid method of conjugate gradient algorithm with
Hestenes-Stiefel and Dai-Yuan algorithms. Define

ISSN: 1813 - 1662

p =200 as the whole set of np test problems and
S =3 the set of the interested solvers. Let |p s be

the number of objective function evaluations required

by solver S  for problem D . Define the
performance ratio as
I
—_ps
Me = ....(52)

p
Where |p :mm{lp’S 'seS} Itis obvious that

M >1 for allp,s. If a solver fails to solve a

problem, the ratio I is assigned to be a large

p.s
number M . The performance profile for each solver
S is defined as the following cumulative distribution

function for performance ratio rp s

size{peP:r, <7} .. .(53
p (=P EP T 2T (59
p
Obviously, p, (1) represents the percentage of

problems for which solver S is the best. See [10] for
more details about the performance profile. The
performance profile can also be used to analyze the
number of iterations, the number of gradient
evaluations and the cpu time. Besides,

to get a clear observation, we give the horizontal
coordinate a log-scale in the following figures.

Note:-

1- By using wolfe conditions (11) and (12) to choose

o, [18].
2- £=0.1.

Performance based on Iteration
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Figure (1). Comparison based on number of iteration for the algorithms FR, PR and KH2.
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Performance based on Functions
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Figure (2). Comparison based on humber of function evaluations for the algorithms FR, PR and KH2.

Performance based on Time
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Figure (3). Comparison based time for the algorithms FR, PR and KH2.
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Figure (4). Comparison based on total time needed for solving 200 test problem .
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