Generalization of numerical range of polynomial operator matrices

Main Article Content

Darawan Zrar Mohammed
Ahmed Muhammad

Abstract

Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.

Article Details

How to Cite
Darawan Zrar Mohammed, & Ahmed Muhammad. (2023). Generalization of numerical range of polynomial operator matrices. Tikrit Journal of Pure Science, 28(1), 75–81. https://doi.org/10.25130/tjps.v28i1.1268
Section
Articles

References

[1] Li, C.-K. and L. Rodman, Numerical range of matrix polynomials. SIAM Journal on Matrix Analysis and Applications, 1994. 15(4): p. 1256-1265.

[2] Gohberg, I. and M. Kaashoek, AS Markus, Introduction to the spectral theory of polynomial operator pencils. Bulletin (New Series) of the American Mathematical Society, 1989. 21(2): p. 350-354.

[3] Li, C.-K. and L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric. Proceedings of the American Mathematical Society, 1998. 126(4): p. 973-982.

[4] T. Bayasgalan, The numerical range of linear operators in spaces with an indefnite metric (Russian), Acta Math. Hungar., 57:79, 1991 (MR: 93a:47036).

[5] Muhammad, A., Approximation of the numerical range of polynomial operator matrices. Oper. Matrices 15(3), 1073-1087 (2021)

[6] Psarrakos, P.J., On the estimation of the q-numerical range of monic matrix polynomials. Electronic Transactions on Numerical Analysis, 2004. 17: p. 1-10.

[7] Psarrakos, P.J., The q-numerical range of matrix polynomials, II. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, 2001(45): p. 3-15.

[8] Psarrakos, P.J. and P.M. Vilamos, The q-numerical range of matrix polynomials. Linear and Multilinear Algebra, 2000. 47(1): p. 1-9.

[9] Maroulas, J. and P. Psarrakos, The boundary of the numerical range of matrix polynomials. Linear algebra and its applications, 1997. 267: p. 101-111.

[10] Maroulas, J. and M. Adam, Compressions and dilations of numerical ranges. SIAM Journal on Matrix Analysis and Applications, 1999. 21(1): p. 230-244.

[11] Müller, H., Über eine Klasse von Eigenwertaufgaben mit nichtlinearer

[12] Li, C.-K. and L. Rodman, Numerical range of matrix polynomials. SIAM Journalon Matrix Analysis and Applications, 1994. 15(4): p. 1256-1265.

[13] Maroulas, J. and P. Psarrakos, The boundary of the numerical range of matrix polynomials. Linear algebra and its applications, 1997. 267: p. 101-111.

[14] Maroulas, J. and P. Psarrakos, A connection between numerical ranges of selfadjoint matrix polynomials. Linear and Multilinear Algebra, 1998. 44(4): p. 327- 340.

[15] Horn, R.A. and C.R. Johnson, Topics in matrix analysis cambridge university press. Cambridge, UK, 1991.

[16] Reed, M. and B. Simon, I: Functional analysis. Vol. 1. 1980: Gulf Professional Publishing.

[17] Halmos, P.R., Analytic functions, in A Hilbert Space Problem Book. 1982, Springer. p. 187-198.

[18] Toeplitz, O., Das algebraische Analogon zu einem Satze von Fejér. Mathematische Zeitschrift, 1918. 2(1): p. 187-197.

[19] Hausdorff, F., Der wertvorrat einer bilinearform. Mathematische Zeitschrift, 1919. 3(1): p. 314-316.