Stability conditions of limit cycle for Gompertz Autoregressive model

Main Article Content

Nezar E. Ali
Azher A. Mohammad

Abstract

In this paper, we suggest Gompertz Autoregressive model by using the cumulative distribution function of Gompertz distribution and, the aim of this paper is studying and finding the stability conditions of a limit cycle for the Gompertz Autoregressive model with period,  with giving some examples for Gompertz AR (1) to explain the orbital stable or the orbital unstable with plots the trajectories with different initial values.

Article Details

How to Cite
Nezar E. Ali, & Azher A. Mohammad. (2023). Stability conditions of limit cycle for Gompertz Autoregressive model. Tikrit Journal of Pure Science, 28(2), 129–134. https://doi.org/10.25130/tjps.v28i2.1348
Section
Articles

References

[1] Ozaki, T. and Oda, H., (1977), "Nonlinear Time Series Models Identification by Akaike's Information Criterion", In Information and Systems, ed. Dubuisson . Pergamum Press, Oxford. pp(83-91) .

[2] Priestley, M.B., (1988), "Nonlinear And Nonstationary Time Series Analysis" London: ACADEMIC. Press.

[3] Mohammad, A. A. and Salim, A. J., (2007), "Stability of logistic autoregressive model" , Qatar University, 27:17-28.

[4] Salim, A. J. and Ahmad, A. A., (2018) , "Stability of a Non-Linear Exponential Autoregressive Model" , Open Access Library Journal , Vol.(05) , No.(04) , PP (1-15) .

[5] Salim, A. J. and Youns, A. S., (2019), "Study of Stability of Non-linear Model with Hyperbolic Secant Function" , J. Edu. & Sci., Vol. (28), No. (1), PP (106-120).

[6] Mohammad, A. A., Hamdi, O. A., Khaleel, M. A. " On stability Conditions of Pareto Autoregressive model" , Tikrit Journal of Pure Science, Vol.(25), No.(5), pp(93-98), 2020 .

[7] Pollard, J. H., & Valkovics, E. J. (1992), "The Gompertz distribution and its applications" , Genus, Vol.48, No. 3, PP. 15-28.

[8] Sanku Dey, Fernando A. Moala & Devendra Kumar, "Statistical properties and different methods of estimation of Gompertz distribution with application" , Journal of statistics & management systems, 21(5), PP (839-876), 2018.

[9] Tong, H., (1990), "Nonlinear Time Series: A Dynamical System Approach" , Oxford University Press, New York.

[10] Ozaki, T., (1982), "The statistical Analysis of perturbed limit cycle processes using Nonlinear Time Series Models" , Journal of Time Series Analysis, Vol.1, pp (29-41).

[11] Ozaki, T., (1985), "Nonlinear Time Series Models and Dynamical Systems", Handbook of Statistics , V. 5 (Ed. Hannan , E. J. and Krishnailah , P. R. and Rao , M. M. ) , Elsevier Science Publishers B. V. , pp (25-83) .

[12] Mohammad, A. A., Noori, N. A., "Dynamical Approach in studying GJR-GARCH (Q, P) Models with Application" , Tikrit Journal of Pure Science, 26(2), 2021.