Quadratic BH-algebras and Quadratic TM-algebras

Main Article Content

Shawn Adnan Bajalan
Mohammed Shahab Hassan
Aram K. Bajalan

Abstract

In this paper we present the notion of “quadratic” BH-algebra and TM-algebra, and show that every quadratic BH-algebra and TM-algebra  has a product of the form    , where ; if  is a field with  and  BCI-algebra. Moreover, we show some theorems and examples with relationships among B-algebra, BH –algebra, BG-algebra and TM-algebra.

Article Details

How to Cite
Bajalan, S. A., Hassan, M. S., & Bajalan, A. K. (2023). Quadratic BH-algebras and Quadratic TM-algebras. Tikrit Journal of Pure Science, 28(5), 176–181. https://doi.org/10.25130/tjps.v28i5.1585
Section
Articles

References

[1] K. Iseki, an introduction to the theory of BCK-algebras, Math. Japan. (1978) - cir.nii.ac.jp

[2] K. Iseki, On BCI-algebras, Math. Sem. Notes Kobe Univ.1 (1980), 125-130. MR 81k:06018a.

[3] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313–320. MR 86a:06016. Zbl 579.03047.

[4] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659–661. MR 87d:06042. Zbl 583.03050.

[5] C. B. Kim and H. S. Kim, On BG-algebras, Mate. Vesnik 41 (2008), 497-505.

[6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. 1(1998), 347–354.

[7] K. Megali and Dr.A. Tamilarasi, TM-algebra-Introduction,Casct(2010).

[8] J. Neggers and H. S. Kim, On B-algebras, Math. Vesnik 54 (2002), 21-29.

[9] N. Joseph, S. A. Sun, S.K. Hee, ON Q-ALGEBRAS, Hindawi Publishing Corp, IJMMS.27:12 (2001), 749-757 PII.S0161171201006627. http://ijmms.hindawi.com.

[10] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups and Related Sys., 7(2001), 67-72.

[11] H. S. Kim and H. D. Lee, A quadratic BG-algebras, Int. Math. J. 5 (2004), 529-535.

[12] H. S. Kim and Na Ri KYE, On Quadratic BF-algebras, Sci. Math. Japon., (2006), 1171-1174.

[13] Sun Shin Ahn and Jeong Soon Han , On BP-algebras , journal mathematics and statistcs,5(2013),551-557.

[14] K. J. Lee, Ch. H. Park, Some ideals of pseudo-BCI-algebras, J.Appl.Informatics.27 (2009), 217-231.