Regular divisor graph of finite commutative ring

Main Article Content

Payman Abbas Rashid
Hataw Saleem Rashid

Abstract

Let R be a finite commutative ring with identity 1. We introduce a new graph called regular divisor graph and denoted by . We classify the finite commutative ring to get a special graph and we are going to study some properties of this graph, clique number, chromatic number, number of cycles, connectivity and blocks.

Article Details

How to Cite
Rashid, P. A., & Rashid, H. S. (2023). Regular divisor graph of finite commutative ring . Tikrit Journal of Pure Science, 28(5), 158–175. https://doi.org/10.25130/tjps.v28i5.1587
Section
Articles
Author Biography

Payman Abbas Rashid, Department of Mathematics, Salahuddin University, Iraq

    

 

References

[1] A Wardayani, I. K. I. S., 2020. Regular rings and their properties. Journal of Physics, pp. 1742-6596.

[2] Ali Jafari Taloukolaei, s. s., 2018. Von Neumann regular graphs associated with rings. Discreate Mathematics, Algorithms and Applications, 10(3).

[3] Bela Bollobas, T. C. E. B. F. G. K. R., 1998. Modern Graph Theory. s.l.:Springer Science+ Business Media.

[4] Diestel, R., 2017. Graph Theory. fifth ed. s.l.:y Springer Nature .

[5] Fournier, J.-C., 2006. Graph Theory and Applications. s.l.:Lavoisier entitled .

[6] FRANK AYRES, L. R. J., n.d. Theory and Problems of ABSTRACT ALGEBRA. 2nd ed. 2004: McGraw-Hill Companies.

[7] Haxhimusa, Y., 2006. Basics of Graph Theory. In: The Structurally Optimal Dual Graph Pyramid and its Application in Image Partitioning.. vienna: Pattern Recognition and Image Processing Group.

[8] Ian Wsye, F. t. C., 2020. On the Connectivity of Connected Bipartite Graphs With Two Orbits. *Portland State University.

[9] Marlow Anderson, T. F., 2015. A First Course in Abstract Algebra. s.l.:Taylor & Francis Group.

[10] OSAMA ALKAM, E. A. O., 2008. On the regular elements in Z_n. Turkish Journal of Mathematics, Volume 32, pp. 31-39.

[11] Reza Akhtar, L. L., 2016. Connectivity of the zero-divisor graph for finite rings. Involve, Volume 9.