t-modular spaces

Main Article Content

Safa Shakir

Abstract

In the current study, a new modular type   which is called t-modular is defined. Some properties are given and proven, the vector space  is defined, namely t-modular space with a norm function on  being stated

Article Details

How to Cite
Shakir, S. (2024). t-modular spaces. Tikrit Journal of Pure Science, 29(6), 58–69. https://doi.org/10.25130/tjps.v29i6.1661
Section
Articles

References

[1] Luxemburg, W. A. J., & Zaanen, A. C. (1965, January). Notes on Banach function spaces. XIVa. In Nederl. Akad. Wetensch. Proc. Ser. A 68= Indag. Math. (Vol. 27, pp. 229-239). https://doi.org/10.1016/S1385-7258(63)50014-6

[2] Musielak, J. (2006). Orlicz spaces and modular spaces (Vol. 1034). Springer. https://doi.org/10.1007/BFb0072212

[3] Musielak, J. (2006). Countably modulared spaces. Orlicz Spaces and Modular Spaces, 112-128.

https://doi.org/10.1007/BFb0072210

[4] Rao, M. M., & Ren, Z. D. (2002). Applications of Orlicz spaces. CRC Press.

https://doi.org/10.1201/9780203910863

[5] Krbec, M. (1982). Modular interpolation spaces I. Zeitschrift für Analysis und ihre Anwendungen, 1(1), 25-40.

https://doi.org/10.4171/ZAA/3

[6] Bousselmi, N., Hendrickx, J. M., & Glineur, F. (2023). Interpolation conditions for linear operators and applications to performance estimation problems. arXiv preprint arXiv:2302.08781.

https://doi.org/10.48550/arXiv.2302.08781

[7] Orlicz, W. (1988). Achievements of Polish mathematicians in the domain of functional analysis in the years 1919–1951. Władysław Orlicz, Collected Papers, PWN Polish

Scientific Publishers, Warsaw, 1616-1641.

https://doi.org/10.4467/2353737XCT.15.210.4415

[8] Hosseinzadeh, H., & Parvaneh, V. (2020). Meir–Keeler type contractive mappings in modular and partial modular metric spaces. Asian-European Journal of Mathematics, 13(05), 2050087.

https://doi.org/10.1142/S1793557120500874

[9] Khamsi, M. A. (1996). Fixed point theory in modular function spaces. Recent Advances on Metric Fixed Point Theory (Seville, 1995), 48, 31-57.

https://doi.org/10.1007/978-3-319-14051-3

[10] Kozlowski, W. M. (1988). Modular function spaces. Mongkolkeha, C., Sintunavarat, W., & Kumam, P. (2011). Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory and Applications, 2011, 1-9.

http://dx.doi.org/10.1186/1687-1812-2012-103.

[11] Chistyakov, V. V. (2006, January). Metric modulars and their application. In Doklady Mathematics (Vol. 73, pp. 32-35). Nauka / Interperiodica.

https://doi.org/10.1134/S106456240601008X

[12] Chistyakov, V. V. (2010). Modular metric spaces, I: basic concepts. Nonlinear Analysis: Theory, Methods & Applications, 72(1), 1-14.

https://doi.org/10.1016/j.na.2009.04.057

[13] Okeke, G. A., & Francis, D. (2022). Some fixed-point theorems for a general class of mappings in modular G-metric spaces. Arab Journal of Mathematical Sciences, 28(2), 203-216.

https://doi.org/10.1108/AJMS-02-2021-0037

[14] Mohammed, A. A., & Shaakir, L. K. (2021). partial modular space. Journal of Al-Qadisiyah for Computer Science and Mathematics, pp. Math.1-13 https://doi.org/10.29304/jqcm.2021.13.2.789

[15] Gholidahneh, A., Sedghi, S., Ege, O., Mitrovic, Z. D., & de la Sen, M. (2021). The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Math, 6(2), 1781-1799.

https://doi.org/10.3934/math.2021107

[16] Fouad, O., Radouane, A., & Driss, M. (2022). A FIXED-POINT THEOREM ON SOME MULTI-VALUED MAPS IN MODULAR SPACES. Nonlinear Functional Analysis and Applications, 641-648.

https://doi.org/10.22771/nfaa.2022.27.03.11

[17] Baza, A., & Rossafi, M. (2024). GENERALIZED HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL INEQUALITY IN MODULAR SPACES AND β-HOMOGENEOUS BANACH SPACES. Nonlinear Functional Analysis and Applications, 295-306.

https://doi.org/10.22771/nfaa.2024.29.01.18

[18] Dales, H. G., & Polyakov, M. E. (2011). Multi-normed spaces. arXiv preprint

arXiv:1112.5148.

https://doi.org/10.48550/arXiv.1112.5148

[19] Ali, S. M., & Shaakir, L. K. (2019). On S-normed spaces. Tikrit Journal of Pure Science, 24(4), 82-86.

https://doi.org/10.25130/tjps.v24i4.405

[20] Shaakir, L. K., & Marai, S. S. (2015). quasi-normal Operator of order n. Tikrit Journal of Pure Science, 20(4), 167-169.

https://doi.org/10.25130/tjps.v20i4.1231

[21] Shaakir, L. K., & Hijab, A. A. (2019). Some properties on extended eigenvalues and extended eigenvectors. Tikrit Journal of Pure Science, 24(6), 128-131.

https://doi.org/10.25130/tjps.v24i6.448