t-modular spaces
Main Article Content
Abstract
In the current study, a new modular type which is called t-modular is defined. Some properties are given and proven, the vector space is defined, namely t-modular space with a norm function on being stated
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
[1] Luxemburg, W. A. J., & Zaanen, A. C. (1965, January). Notes on Banach function spaces. XIVa. In Nederl. Akad. Wetensch. Proc. Ser. A 68= Indag. Math. (Vol. 27, pp. 229-239). https://doi.org/10.1016/S1385-7258(63)50014-6
[2] Musielak, J. (2006). Orlicz spaces and modular spaces (Vol. 1034). Springer. https://doi.org/10.1007/BFb0072212
[3] Musielak, J. (2006). Countably modulared spaces. Orlicz Spaces and Modular Spaces, 112-128.
https://doi.org/10.1007/BFb0072210
[4] Rao, M. M., & Ren, Z. D. (2002). Applications of Orlicz spaces. CRC Press.
https://doi.org/10.1201/9780203910863
[5] Krbec, M. (1982). Modular interpolation spaces I. Zeitschrift für Analysis und ihre Anwendungen, 1(1), 25-40.
[6] Bousselmi, N., Hendrickx, J. M., & Glineur, F. (2023). Interpolation conditions for linear operators and applications to performance estimation problems. arXiv preprint arXiv:2302.08781.
https://doi.org/10.48550/arXiv.2302.08781
[7] Orlicz, W. (1988). Achievements of Polish mathematicians in the domain of functional analysis in the years 1919–1951. Władysław Orlicz, Collected Papers, PWN Polish
Scientific Publishers, Warsaw, 1616-1641.
https://doi.org/10.4467/2353737XCT.15.210.4415
[8] Hosseinzadeh, H., & Parvaneh, V. (2020). Meir–Keeler type contractive mappings in modular and partial modular metric spaces. Asian-European Journal of Mathematics, 13(05), 2050087.
https://doi.org/10.1142/S1793557120500874
[9] Khamsi, M. A. (1996). Fixed point theory in modular function spaces. Recent Advances on Metric Fixed Point Theory (Seville, 1995), 48, 31-57.
https://doi.org/10.1007/978-3-319-14051-3
[10] Kozlowski, W. M. (1988). Modular function spaces. Mongkolkeha, C., Sintunavarat, W., & Kumam, P. (2011). Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory and Applications, 2011, 1-9.
http://dx.doi.org/10.1186/1687-1812-2012-103.
[11] Chistyakov, V. V. (2006, January). Metric modulars and their application. In Doklady Mathematics (Vol. 73, pp. 32-35). Nauka / Interperiodica.
https://doi.org/10.1134/S106456240601008X
[12] Chistyakov, V. V. (2010). Modular metric spaces, I: basic concepts. Nonlinear Analysis: Theory, Methods & Applications, 72(1), 1-14.
https://doi.org/10.1016/j.na.2009.04.057
[13] Okeke, G. A., & Francis, D. (2022). Some fixed-point theorems for a general class of mappings in modular G-metric spaces. Arab Journal of Mathematical Sciences, 28(2), 203-216.
https://doi.org/10.1108/AJMS-02-2021-0037
[14] Mohammed, A. A., & Shaakir, L. K. (2021). partial modular space. Journal of Al-Qadisiyah for Computer Science and Mathematics, pp. Math.1-13 https://doi.org/10.29304/jqcm.2021.13.2.789
[15] Gholidahneh, A., Sedghi, S., Ege, O., Mitrovic, Z. D., & de la Sen, M. (2021). The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Math, 6(2), 1781-1799.
https://doi.org/10.3934/math.2021107
[16] Fouad, O., Radouane, A., & Driss, M. (2022). A FIXED-POINT THEOREM ON SOME MULTI-VALUED MAPS IN MODULAR SPACES. Nonlinear Functional Analysis and Applications, 641-648.
https://doi.org/10.22771/nfaa.2022.27.03.11
[17] Baza, A., & Rossafi, M. (2024). GENERALIZED HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL INEQUALITY IN MODULAR SPACES AND β-HOMOGENEOUS BANACH SPACES. Nonlinear Functional Analysis and Applications, 295-306.
https://doi.org/10.22771/nfaa.2024.29.01.18
[18] Dales, H. G., & Polyakov, M. E. (2011). Multi-normed spaces. arXiv preprint
arXiv:1112.5148.
https://doi.org/10.48550/arXiv.1112.5148
[19] Ali, S. M., & Shaakir, L. K. (2019). On S-normed spaces. Tikrit Journal of Pure Science, 24(4), 82-86.
https://doi.org/10.25130/tjps.v24i4.405
[20] Shaakir, L. K., & Marai, S. S. (2015). quasi-normal Operator of order n. Tikrit Journal of Pure Science, 20(4), 167-169.
https://doi.org/10.25130/tjps.v20i4.1231
[21] Shaakir, L. K., & Hijab, A. A. (2019). Some properties on extended eigenvalues and extended eigenvectors. Tikrit Journal of Pure Science, 24(6), 128-131.