Orbitally Stability of Log-Logistic Autoregressive Model with Application

Main Article Content

Mohammed A. Hamad
Azher A. Mohammad

Abstract

This research aims to study and finding the conditions for stability of the limit cycle of the proposed model (Log-Logistic autoregressive) based on the cumulative function of the Log-Logistic distribution. We first proved the conditions for the first order orbital stability with period ( ), and then generalized the conditions for orbital stability of order p to Log-Logistic AR (p). We give some examples of the proven conditions, and then we plot the trajectories by using different initial values.

Article Details

How to Cite
A. Hamad, M., & A. Mohammad, A. (2025). Orbitally Stability of Log-Logistic Autoregressive Model with Application. Tikrit Journal of Pure Science, 30(1), 71–79. https://doi.org/10.25130/tjps.v30i1.1682
Section
Articles

References

1. Ozaki T, Oda H. Non-linear time series model identification by Akaike's information criterion. IFAC Proceedings Volumes. 1977;10(12):83-91. https://doi.org/10.1016/S1474-6670(17)66563-7

2. Ozaki T. The statistical analysis of perturbed limit cycle processes using nonlinear time series models. Journal of Time Series Analysis.1982;3(1):29-41. https://doi.org/10.1111/j.1467-9892.1982.tb00328.x

3. Mohammad AA, Salim. Stability of logistic autoregressive model. 2007. http://hdl.handle.net/10576/10056

4. Youns ASYA, Salim AG. Study of stability of non-linear model with hyperbolic secant function. Journal of Education and Science. 2019;28(1):106-20. 10.33899/edusj.2019.160917

5. Salim AJ, Ebrahem KI. studying the stability by using local linearization method. International Journal of Engineering Technology and Natural Sciences. 2020;2(1):27-31. 10.33899/edusj.2019.160917

6. Hamdi OA, Mohammad AA, Khaleel MA. On stability conditions of Pareto autoregressive model. Tikrit Journal of Pure Science. 2020;25(5):93-8.

7. Noori NA, Mohammad AA. Dynamical approach in studying GJR-GARCH (Q, P) models with application. Tikrit Journal of Pure Science. 2021;26(2):145-56.

8. Abdullah HH, Mohammad AA. Stability Study of Exponential Double Autoregressive model with application. NeuroQuantology. 2022;20(6):4812.

9. Ali NE, Mohammad AA. Stability conditions of limit cycle for Gompertz Autoregressive model. Tikrit Journal of Pure Science.2023;28(2). https://doi.org/10.25130/tjps.v28i2.1348

10. Youns AS, Ahmad SM. Stability Conditions for a Nonlinear Time Series Model. International Journal of Mathematics and Mathematical Sciences. 2023;2023(1):5575771. https://doi.org/10.1155/2023/5575771

11. Tadikamalla PR, Johnson NL. Systems of frequency curves generated by transformations of logistic variables. Biometrika. 1982;69(2):461-5. https://doi.org/10.1093/biomet/69.2.461

12. Bassim WB, Salem AJ, Ali AH. A new analytical study of prey–predator dynamical systems involving the effects of Hide-and-Escape and predation skill augmentation. Results in Control and Optimization. 2024;16:100449. https://doi.org/10.1016/j.rico.2024.100449

13. Ashkar F, Mahdi S. Fitting the log-logistic distribution by generalized moments. Journal of Hydrology. 2006;328(3-4):694-703. https://doi.org/10.1016/j.jhydrol.2006.01.014

14. Kleiber C, Kotz S. Statistical size distributions in economics and actuarial sciences: John Wiley & Sons; 2003.