Optimization of Tin-Based Lead-Free Perovskite Solar Cells Using SCAPS-1D: Investigating ETL and HTL Materials for Enhanced Efficiency
Main Article Content
Abstract
The Solar Cell Capacitance Simulator (SCAPS-1D) software is used to investigate the optimal use of methylammonium tin chloride as the active material in perovskite solar cells (PSCs), a new class of solar cells. The formulation of PSC is as follows:
FTO/ETL/CH3NH3SnCl3/HTL/Au. To improve the performance of perovskite solar cells, various materials, such as IGZO, SnO2, TiO2, and ZnO, are tested as electron transport layers (ETLs), and Spiro-OMeTAD, NiO, Cu2O, and CuO are tested as hole transport layers (HTLs). The study shows that among these ETLs, SnO2 records the highest potential to achieve high energy conversion (η) when combined with Spiro-OMeTAD as the HTLs. In addition, the total defects (Nt) were studied in the PSC by keeping Nt constant in the first two layers and varying Nt in the third layer. The results show that PSC is indeed efficient; It is desirable to have a Nt of (1015 cm-3) for the ETL (SnO2), (109 cm-3) for the absorber layer (CH3NH3SnCl3), and (1014 cm-3) for the HTL (SpiroOMeTAD). The power conversion efficiency has increased for this output value to (13.68 %) with an open circuit voltage (Voc) of (1.6 V). This development aims to enhance the performance of environmentally friendly, lead-free solar cells based on tin-based perovskite materials.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
1. Lye YE, Chan KY, Ng ZN. A review on the progress, challenges, and performances of tin-based perovskite solar cells. Nanomaterials. 2023 Feb 1;13(3):585. https://doi.org/10.3390/nano13030585.
2. Dris K, Benhaliliba M, Ayeshamariam A, Roy A, Kaviyarasu K. Improving the perovskite solar cell by insertion of methyl ammonium tin oxide and cesium tin chloride as absorber layers: scaps 1d study based on experimental studies. Journal of Optics. 2024:1-23.
https://ui.adsabs.harvard.edu/link_gateway/2024JOpt..tmp..385D/doi:10.1007/s12596-024-01996-7.
3. Moyez SA, Roy S. Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. Journal of Nanoparticle Research. 2018;20:1-13. https://ui.adsabs.harvard.edu/link_gateway/2018JNR....20....5M/doi:10.1007/s11051-017-4108-z
4. Deng P, Dai W, Gou Y, Zhang W, Xiao Z, He S, Xie X, Zhang K, Li J, Wang X, Lin L. Improving Thermal Stability of High-Efficiency Methylammonium-Free Perovskite Solar Cells via Chloride Additive Engineering. ACS Applied Materials & Interfaces. 2024 May 21. https://doi.org/10.1021/acsami.4c01335.
5. Chen P, Pan W, Zhu S, Cao F, Tong A, He R, Lan Z, Sun W, Wu J. Buried modification with tetramethylammonium chloride to enhance the performance of perovskite solar cells with nip structure. Chemical Engineering Journal. 2023 Jul 15;468:143652. https://ui.adsabs.harvard.edu/link_gateway/2023ChEnJ.46843652C/doi:10.1016/j.cej.2023.143652.
6. Liu J, Chen X, Chen K, Tian W, Sheng Y, She B, Jiang Y, Zhang D, Liu Y, Qi J, Chen K. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science. 2024 Mar 15;383(6688):1198-204.
https://doi.org/10.1126/science.adk9089
7. Weerasinghe HC, Macadam N, Kim JE, Sutherland LJ, Angmo D, Ng LW, Scully AD, Glenn F, Chantler R, Chang NL, Dehghanimadvar M. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nature Communications. 2024 Mar 12;15(1):1656.
https://doi.org/10.1038/s41467-024-46016-1.
8. Gopinathan N, Basha SS, Vasimalai N, Mundari NA, Shajahan A, Parveen JS, Enayathali SS. Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride. Journal of Electronic Materials. 2024 Jan;53(1):94-105. https://ui.adsabs.harvard.edu/link_gateway/2024JEMat..53...94G/doi:10.1007/s11664-023-10777-0.
9. Sahoo D, Karan AK, Manik NB. Study on the effect of temperature on electrical parameters of lead free methylammonium tin halide based Perovskite Schottky Devices. International Journal of Innovative Research in Physics. 2022;4(1):6-16. http://dx.doi.org/10.15864/ijiip.4102
10. Singh PK, Singh R, Singh V, Bhattacharya B, Khan ZH. New class of lead free perovskite material for low-cost solar cell application. Materials Research Bulletin. 2018;97:572-7.
https://doi.org/10.1016/j.materresbull.2017.09.054
11. Thankappan A. Numerical simulation of solar cell performance with copper-based layered perovskite using SCAPS 1D software. Model Simul Mater Sci Eng. 2024;32:015010. http://dx.doi.org/10.1088/1361-651X/ad104e
12. Arif F, Aamir M, Shuja A, Shahiduzzaman M, Akhtar J. Simulation and numerical modeling of high performance CH3NH3SnI3 solar cell with cadmium sulfide as electron transport layer by SCAPS-1D. Results in Optics. 2024;14:100595. https://doi.org/10.1016/j.rio.2023.100595
13. Salem MS, Shaker A, Zekry A, Abouelatta M, Alanazi A, Alshammari MT, Gontand C. Analysis of hybrid hetero-homo junction lead-free perovskite solar cells by SCAPS simulator. Energies. 2021 Sep 12;14(18):5741. https://doi.org/10.3390/en14185741.
14. Rehman A, Munir T, Afzal S, Saleem M, Ikhioya IL. Enhanced Solar Cell Efficiency with Tin-Based Lead-Free Material (FASnI3) through SCAPS-1D Modeling. Eurasian Journal of Science and Technology. 2024;4(3). https://doi.org/10.48309/ejst.2024.429200.1118
15. Slami A, Bouchaour M, Merad L. Comparative study of modelling of Perovskite solar cell with different HTM layers. Int J Mater. 2020;7(July). http://dx.doi.org/10.46300/91018.2020.7.1
16. Shamna M, Nithya K, Sudheer K. Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Materials Today: Proceedings. 2020;33:1246-51. http://dx.doi.org/10.1016/j.matpr.2020.03.488
17. Mandadapu U, Vedanayakam SV, Thyagarajan K, Babu B. Optimisation of high efficiency tin halide perovskite solar cells using SCAPS-1D. International Journal of Simulation and Process Modelling. 2018;13(3):221-7. http://dx.doi.org/10.1504/IJSPM.2018.093097
18. Sunny A, Rahman S, Khatun MM, Ahmed SRA. Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Advances. 2021;11(6):065102. https://doi.org/10.1063/5.0049646.
19. Patel PK. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell. Scientific Reports. 2021;11(1):1-11. https://doi.org/10.1038/s41598-021-82817-w
20. Azri F, Meftah A, Sengouga N, Meftah A. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar energy. 2019;181:372-8. http://dx.doi.org/10.1016/j.solener.2019.02.017.
21. Madan J, Pandey R, Sharma R. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Solar energy. 2020;197:212-21. http://dx.doi.org/10.1016/j.solener.2020.01.006
22. De Los Santos IM, Cortina-Marrero HJ, Ruíz-Sánchez MA, Hechavarría-Difur L, Sánchez-Rodríguez FJ, Courel M, Hu H. Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study. Solar Energy. 2020 Mar 15;199:198-205. https://doi.org/10.1016/j.solener.2020.02.026
23. Hima A, Lakhdar N, Saadoune A. Effect of Electron Transporting Layer on Power Con-version Efficiency of Perockite-based Splar Cell: Comparative Study. Журнал нано-та електронної фізики. 2019(11,№ 1):01026-1-5. http://dx.doi.org/10.21272/jnep.11(1).01026
24. Aseena S, Abraham N, Babu VS. Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D. Materials Today: Proceedings. 2021;43:3432-7. https://doi.org/10.1016/j.matpr.2020.09.077
25. Casas G, Cappelletti MÁ, Cedola AP, Soucase BM, y Blancá EP. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices and Microstructures. 2017;107:136-43. http://dx.doi.org/10.1016/j.spmi.2017.04.007
26. Shoab M, Aslam Z, Zulfequar M, Khan F. Numerical interface optimization of lead-free perovskite solar cells (CH3NH3SnI3) for 30% photo-conversion efficiency using SCAPS-1D. Next Materials. 2024;4:100200. https://doi.org/10.1016/j.nxmate.2024.100200
27. Krishnan A, Subash T. Simulation of NiOx Based Solar Cells Using SCAPS Software. NanoWorld J. 2023;9(S5):S143-S8. https://doi.org/10.17756/nwj.2023-s5-028
28. Najim AH, Saleh AN. Study effect of window and BSF layers on the properties of the CZTS/CZTSe solar cell by SCAPS–1D. Tikrit Journal of Pure Science. 2019;24(3):77-83. https://doi.org/10.25130/tjps.v24i3.372
29. Razooqi MA, Majeed ZN. The Effect of Copper Doping on Some Structural and Electrical Properties of Titanium Dioxide Nanofilms. Tikrit Journal of Pure Science. 2023;28(6):51-7. https://doi.org/10.25130/tjps.v28i6.1377
30. Moiz SA, editor Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell. Photonics; 2021: MDPI. https://doi.org/10.3390/photonics9010023
31. Bhavsar K, Lapsiwala P. Numerical simulation of perovskite solar cell with different material as electron transport layer using SCAPS-1D software. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2021;24(3):341-7. https://doi.org/10.15407/spqeo24.03.341
32. Hongsith K, Yarangsi V, Sucharitakul S, Phadungdhitidhada S, Ngamjarurojana A, Choopun S. A Multi-Electron Transporting Layer for Efficient Perovskite Solar Cells. Coatings. 2021;11(9):1020. https://doi.org/10.3390/coatings11091020.
33. Okada Y, Suzuki A, Yamasaki Y, Oku T. Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer. AIP Conference Proceedings; 2017: AIP Publishing LLC. https://doi.org/10.1063/1.4974797.
34. Mishra K, Chauhan R, Mishra R, Srivastava V. Performance optimization of lead-free inorganic perovskite solar cell using SCAPS-1D. Journal of Optics. 2024;53(3):2668-78. http://dx.doi.org/10.1007/s12596-023-01466-6
35. Moinuddin RM, Hasan M, Rahaman M, Islam KS. Numerical optimization and efficiency analysis of Sn-based perovskite-on-silicon tandem solar cells with various TCO materials using SCAPS-1D simulation. AIP Advances. 2024;14(8). http://dx.doi.org/10.1063/5.0217477
36. Biswas SK, Sumon MS, Sarker K, Orthe MF, Ahmed MM. A Numerical Approach to Analysis of an Environment‐Friendly Sn‐Based Perovskite Solar Cell with SnO2 Buffer Layer Using SCAPS‐1D. Advances in Materials Science and Engineering. 2023;2023(1):4154962. http://dx.doi.org/10.1155/2023/4154962.
37. Vaish S, Dixit SK. Study the effect of total defect density variation in absorbing layer on the power conversion efficiency of lead halide perovskite solar cell using SCAPS-1D simulation tool. Materials Today: Proceedings. 2023;91:17-20. https://doi.org/10.1016/j.matpr.2023.05.374.
38. Jamal MS, Shahahmadi SA, Wadi MA, Chelvanathan P, Asim N, Misran H, Hossain MI, Amin N, Sopian K, Akhtaruzzaman M. Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik. 2019 Apr 1;182:1204-10. https://doi.org/10.1016/j.ijleo.2018.12.163
39. Ganem HT, Saleh AN. The effect of band offsets of absorption layer on CNTS/ZnS/ZnO solar cell by SCAPS-1D. Tikrit Journal of Pure Science. 2020 Dec 23;25(6):79-87. https://doi.org/10.25130/tjps.v25i6.316
40. Kothandapani Z, Islam M, Reza Y, Hasana A, Amin N. Optimization of Cu2O and CuSCN as HTL of planar perovskite solar cells via numerical simulation. Journal of Ovonic Research Vol. 2020;16(6):369-77. http://dx.doi.org/10.15251/JOR.2020.166.369.