An Effective HS-CG Update: Avoiding Oscillations in Nonlinear Optimization

Main Article Content

Isam H. Halil

Abstract

In this research, we introduce a modified direction update formula to improve the descent features of iterative optimization, therefore presenting a fresh approach to the Conjugate Gradient (CG) method. The proposed method adjusts the search direction at each iteration by incorporating gradient and step projections, weighted by inner products between gradient and step vectors. The modified HS-CG approach seeks to decrease the computational cost often associated with conventional approaches and speed up convergence by carefully balancing these projections. Experimental results demonstrate that our approach outperforms standard CG algorithms in achieving faster convergence on a range of benchmark problems, especially in high-dimensional spaces. This enhancement makes the method particularly promising for large-scale optimization challenges encountered in fields such as machine learning and engineering design.

Article Details

How to Cite
H. Halil , I. (2025). An Effective HS-CG Update: Avoiding Oscillations in Nonlinear Optimization. Tikrit Journal of Pure Science, 30(2), 94–100. https://doi.org/10.25130/tjps.v30i2.1886
Section
Articles

References

1. Halil IH, Abbo KK, Ebrahim HH, editors. Modifications of Hestenes and Stiefel CG method for solving unconstrained optimization problems. 2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM); 2021: IEEE. https://doi.org/10.1109/ICCITM53167.2021.9677756

2. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Li C, Nguyen H, et al. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Engineering Applications of Artificial Intelligence. 2021;97:104015. https://doi.org/10.1016/j.engappai.2020.104015

3. Abdollahzadeh B, Gharehchopogh FS. A multi-objective optimization algorithm for feature selection problems. Engineering with Computers. 2022;38 (Suppl 3):1845-63.

https://doi.org/10.1007/s00366-021-01369-9

4. Andrei N. Nonlinear conjugate gradient methods for unconstrained optimization: Springer; 2020.

5. Hassan Ibrahim A, Kumam P, Abubakar AB, Abubakar J, Muhammad AB. Least-square-based three-term conjugate gradient projection method for ℓ 1-norm problems with application to compressed sensing. Mathematics. 2020;8(4):602.

https://doi.org/10.3390/math8040602

6. Yuan G, Lu J, Wang Z. The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems. Applied Numerical Mathematics. 2020;152:1-11. https://doi.org/10.1016/j.apnum.2020.01.019

7. Hassan BA, Dahawi HO, Younus AS. A new kind of parameter conjugate gradient for unconstrained optimization. Indonesian Journal of Electrical Engineering and Computer Science. 2020;17(1):404. https://doi.org/10.11591/ijeecs.v17.i1.pp404-411

8. Khudhur HM, Fawze AAM. An improved conjugate gradient method for solving unconstrained optimisation and image restoration problems. International Journal of Mathematical Modelling and Numerical Optimisation. 2023;13(3):313-25. https://doi.org/10.1504/IJMMNO.2023.132286

9. Ji Z, Dudík M, Schapire RE, Telgarsky M, editors. Gradient descent follows the regularization path for general losses. Conference on Learning Theory; 2020: PMLR.

https://doi.org/10.48550/arXiv.2006.11226

10. Fletcher R. Practical methods of optimization: John Wiley & Sons; 2000.

https://doi.org/10.1093/comjnl/7.2.149

11. Dai Y-H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on optimization. 1999;10(1):177-82. https://doi.org/10.6028/jres.049.044

12. Hu Y, Storey C. Global convergence result for conjugate gradient methods. Journal of Optimization Theory and Applications. 1991;71(2):399-405. https://doi.org/10.1002/9781118723203

13. Fletcher R, Reeves CM. Function minimization by conjugate gradients. The computer journal. 1964;7(2):149-54. https://doi.org/10.1051/m2an/196903r100351

14. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of research of the National Bureau of Standards. 1952;49(6):409-36. https://doi.org/10.1137/S1052623497318992

15. Polak E, Ribiere G. Note sur la convergence de méthodes de directions conjuguées. Revue française d'informatique et de recherche opérationnelle Série rouge. 1969;3(16):35-43.

https://doi.org/10.1007/BF00939927

16. Hu W, Wu J, Yuan G. Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration. Applied Numerical Mathematics. 2020;158:360-76.

https://doi.org/10.1016/j.apnum.2020.08.009

17. Ibrahem SA, Halil IH, Abdullah SM. Two Algorithms for Solving Unconstrained Global Optimization by Auxiliary Function Method. Tikrit Journal of Pure Science. 2024;29(3):84-9. https://doi.org/10.25130/tjps.v29i3.1604

18. Abdullah ZM, Asker SA. A New Scaled Three-Term Conjugate Gradient Algorithms for Unconstrained Optimization. Tikrit Journal of Pure Science. 2023;28(4):103-10.

https://doi.org/10.25130/tjps.v28i4.1534

19. Awwal AM, Wang L, Kumam P, Mohammad H, Watthayu W. A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing. Mathematical and Computational Applications. 2020;25(2):27. https://doi.org/10.3390/mca25020027

20. Taqi AH, Shaker AN. Development Modified Conjugate Gradiente Algorithm. Tikrit Journal of Pure Science. 2015;20(5):185-92. https://doi.org/10.25130/tjps.v20i5.1254

21. Khudhur HM, Halil IH. Noise removal from images using the proposed three-term conjugate gradient algorithm. Компьютерные исследования и моделирование. 2024;16(4):841-53.

https://doi.org/10.20537/2076-7633-2024-16-4-841-853

22. Gould NI, Orban D, Toint PL. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Transactions on Mathematical Software (TOMS). 2003;29(4):373-94. https://doi.org/10.1145/962437.962439

23. Andrei N. An unconstrained optimization test functions collection. Adv Model Optim. 2008;10(1):147-61. https://camo.ici.ro/journal/vol10/v10a10.pdf

24. Bongartz I, Conn AR, Gould N, Toint PL. CUTE: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software (TOMS). 1995;21(1):123-60.

https://doi.org/10.1145/200979.201043

25. Hager WW, Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on optimization. 2005;16(1):170-92. https://doi.org/10.1137/030601880