The Othogonality of Martingale in Birkhoff’s sense and others

Main Article Content

Suha Jumaa
H.H.Ibrahim

Abstract

Orthogonality is one of an important  the concepts in Mathematics , therefor it will be discussed in this paper, the orthogonality of martingale according to Birkhoff ’s, Roberts’s, Singer’s, Carlsson’s sense for  orthogonality  and the conditions that are needed to have orthogonality

Article Details

How to Cite
Suha Jumaa, & H.H.Ibrahim. (2019). The Othogonality of Martingale in Birkhoff’s sense and others. Tikrit Journal of Pure Science, 24(1), 112–114. https://doi.org/10.25130/tjps.v24i1.340
Section
Articles

References

[1] Ash, R. B. (1972). Real Analysis and Probability.

Academic press, INC, New York.

[2] Williams, D. (1961). Probability with

Martingales, Cambridge University Press.

[3] Ojha, B. P. (2016). Some New Types of

Orthogonalities in Normed Spaces and Application in

Best Approximation. Journal of Advanced College of

Engineering and Management, 2: 1-4.

[4] Roberts, B. D. (1934). On the geometry of

abstract vector spaces. Tohoku Mathematical Journal,

First Series, 39, 42-59.

[5] Kanu, R. U. and Rauf, K. (2014). On Some

Results on Linear Orthogonality Spaces. Asian

Journal of Mathematics and Applications, 14: 155-

166.

[6] Taylor, A.E. (1958). Introduction To Functional

Analysis, New York.

[7] Birkhoff, G. (1935). Orthogonality in linear

metric spaces. Duke Mathematical Journal, 1(2):

169-172.

[8] Singer, I. (1957). Angles abstraits et fonctions

trigonométriques dans les espaces de Banach. Acad.

RP Romine. Bui. § ti. Sec}. § ti. Mat. Fiz, 9, 29-42.

[9] Carlsson, S. O. (1962). Orthogonality in normed

linear spaces. Arkiv för Matematik, 4(4): 297-318.