L-Hollow modules

Main Article Content

Thaer Z. Khlaif
Nada K. Abdullah

Abstract

To consider R is a commutative ring with unity,  be a nonzero unitary left   R-module,  is known hollow module if each proper submodule of  is small.  L-hollow module is a strong form of hollow module, where an R-module  is known L-hollow module if  has a unique maximal submodule which contains each small submodules. The current study deals with this class of modules and give several fundamental properties  related with this concept.

Article Details

How to Cite
Thaer Z. Khlaif, & Nada K. Abdullah. (2019). L-Hollow modules. Tikrit Journal of Pure Science, 24(7), 104–109. https://doi.org/10.25130/tjps.v24i7.465
Section
Articles

References

[1] Alsaadi, S. A. and Saaduon N. Q.(2013). FI-Hollow-Lifting Modules, Al-Mustansiriyah J. Sci., 24(5):293-306.

[2] Hasan, W.K. (2016). Generalized-hollow lifting modules, Iraqi J. of Sci. 57(3):3089-3093.

[3] Payman M. H. (2005). Hollow Modules and Semihollow modules, Thesies College of science, University of Baghdad.

[4] Wisbauer R. (1991). Foundations of Module and Ring theory. Gordon and Brtach Reading. (3). P. 351.

[5] Mohamed, S. H. and B. J. Muller.(1990) Continuous and Discrete Modules, London math. Soc. LNS 147 Cambridge Univ. press, Cambridge.

[6]. Jeathoom R. M. (2017). Some Generalizations of Hollow-lifting Modules, Thesis College of Sci. Mus. University.

[7] Yasen, S.M. and Hasan, W.K.(2012). Pure - Supplemented Modules, Journal of Science. 53(4):882-886.