A Priori and a Posteriori Error Analysis for Generic Linear Elliptic Problems

Main Article Content

Hala Raad
Mohammad Sabawi

Abstract

In this paper, a priori error analysis has been examined for the continuous Galerkin finite element method which is used for solving a generic scalar and a generic system of linear elliptic equations. We derived optimal order a priori error bounds in (energy) norm utilising standard a priori error analysis techniques and tools. Also, a posteriori error analysis is investigated for a generic scalar linear elliptic equation and for a generic system of linear elliptic equations. We derived optimal residual-based a posteriori error estimates energy technique in  norm

Article Details

How to Cite
Hala Raad, & Mohammad Sabawi. (2022). A Priori and a Posteriori Error Analysis for Generic Linear Elliptic Problems. Tikrit Journal of Pure Science, 27(2), 57–64. https://doi.org/10.25130/tjps.v27i2.68
Section
Articles

References

[1] Courant, R. (1943). Variational methods for the solution of problems equilibrium and vibrations, Bull. Amer. Math. Soc., 49, pp. 1–23.

[2] Zienkiewicz, O., Taylor, R. and Zhu, J. (2013). The Finite Element Method Its Basis & Fundamentals, Butterworth-Heinemann. The 7th edn.

[3] Ainsworth, M. and J. Oden, (2000). A Posteriori Error Estimation in Finite Element Analysis, Wiley– Interscience (John Wiley & Sons), New York.

[4] Amrein, M. (2015). Adaptive Newton methods for partial differential equations, Ph.D. thesis, University of Bern, Bern, Switzerland

[5] Amrein, M., Melenk, J. and Wihler, T. (2017). An hp–adaptive Newton–Galerkin finite element procedure for semilinear boundary value problems, Mathematical Methods in the Applied Sciences, 40(6), pp. 1973-1985.

[6] Amrein, M. and Wihler, T. (2015). Fully adaptive Newton-Galerkin methods for semilinear elliptic partial differential equations, SIAM J. Sci. Comput., 37, pp. A1637–A1657.

[7] Arnold, D., Brezzi, F., Cockburn, B. and Marini, L. (2002). Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, pp. 1749–1779.

[8] Ciarlet, P. (2002). The Finite Element Method for Elliptic Problems, SIAM.

[9] Eriksson, K., Estep, D. Hansbo, P. and Johnson, C. Computational Differential Equations, Cambridge University Press, 1996.

[10] Gockenbach, M. (2013). Understanding and Implementing the Finite Element Method, Oxford University Press, Oxford.

[11] Langtangen, H. (2016). Solving nonlinear ODE and PDE problems, Lecture Notes, Center for Biomedical Computing, Simula Research Laboratory, University of Oslo.

[12] Larson, M. and Bengzon, F. (2013). The Finite Element Method: Theory, Implementation and Applications, Springer.

[13] Riviere, B. (2008). Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM.

[14] Süli, E. (2000). Finite element methods for partial differential equations, Lecture Notes, University of Oxford.

[15] Verfürth, R. (2006). A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford,

[16] Georgoulis, E. (2010). Discontinuous Galerkin methods for linear problems: An introduction, Research Reports in mathematics, University of Leicester.

[17] Gokul, K. and Dulal, R. (2021). Adaptive finite element method for solving Poisson partial differential equation, Journal of Nepal Mathematical Society (JNMS), 4.

[18] Holtmannspötter, M. and Rösch, A. (2020). A priori error estimates for the space–time finite element approximation of a non–smooth optimal control problem governed by a coupled semilinear pde–ode system, arXiv:2004.05837v1.

[19] Ern A. and Meuier, S. (2007). A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic– parabolic problems, ESIAM Math. Model. and Numer. Anal.

[20] Kim, H., Jung, C. and Nguyen, T. (2021). A staggered discontinuous Galerkin method for elliptic problems on rectangular grids, Computers and Mathematics with Applications, 99, pp. 133–154.

[21] Georgoulis, E. (2003). Discontinuous Galerkin methods on shape-regular and anisotropic meshes, Ph.D. thesis, Oxford University, Oxford, UK.

[22] Virtanen, J. (2010). Adaptive discontinuous Galerkin Methods for Fourth Order Problems, Ph.D. thesis, University of Leicester, Leicester, UK.

[23] Guignard, D. (2016). A Posteriori Error Estimation for Partial Differential Equations with Random Input Data, Ph.D. thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, France,

[24] Sabawi, Y. (2016). Adaptive Discontinuous Galerkin Methods for Interface Problems, Ph.D. thesis, University of Leicester, Leicester, UK.

[25] Cangiani, A., Georgoulis, E. and Sabawi, Y. (2018). Adaptive discontinuous Galerkin method for

elliptic interface problems, Math. Comput., 87, pp. 2675–2707.

[26] Cangiani, A., Georgoulis, E. and Sabawi, Y. (2020). Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems, J. Comput. Appl. Math., 367.

[27] Dedner, A., Giesselmann, J., Pryer, T. and Ryan, J. (2019). Residual estimates for post–processing in elliptic problems, arXiv:1906.04658v1.

[28] Yang, J. (2020). The Error Estimation in Finite Element Methods for Elliptic Equations with Low Regularity, Ph.D. thesis, Purdue University, Indiana, USA.

[29] Ye. X. and Zhang, S. (2021). Low regularity error analysis for weak Galerkin finite element methods for second order elliptic problems, Numer. Math. Theor. Meth. Appl., 14, pp. 613–623.

[30] Casas, E. Mateos, M. and Rösch, A. (2021). Numerical approximation of control problems of non-monotone and non-coercive semilinear elliptic problems, Numerische Mathematik, https://doi.org/10.1007/s00211021-01222-7.

[31] Dios, B., Gudi, T. and Porwal, K. (2021). Pointwise a posteriori error analysis of a discontinuous Galerkin method for the elliptic obstacle problem, arXiv:2018.11611v1.