Weakly Quasi 2-Absorbing submodule

Main Article Content

Haibt K . Mohammadali
Khalaf H Alhabeeb

Abstract

Let R be a commutative ring with identity , and M is a unitary left R-module”, “A proper submodule E of an R-module M is called a weakly quasi-prime if whenever r, s ∈ R, m ∈ M, with 0 ≠ rsm ∈ E , implies that rm ∈ E or sm ∈ E”. “We introduce the concept of a weakly quasi 2-absorbing submodule as a generalization of weakly quasi-prime submodule”, where a proper submodule E of M is called a weakly quasi 2-absorbing submodule if whenever r,s,t ∈ R, m ∈M with  0≠ rstm ∈ E , implies that rsm ∈ E or rtm ∈ E or stm ∈ E. we study the basic properties of weakly quasi 2-absorbing. Furthermore, the relationships of weakly quasi 2-absorbing submodule with other classes of module are elistraited.

Article Details

How to Cite
Haibt K . Mohammadali, & Khalaf H Alhabeeb. (2023). Weakly Quasi 2-Absorbing submodule. Tikrit Journal of Pure Science, 23(7), 101–104. https://doi.org/10.25130/tjps.v23i7.703
Section
Articles

References

[1] Waad K. H ''Weakly Quasi-Prime Modules and Weakly Quasi-Prime Submodules'', M. Sc. Thesis Tikrit University 2003.

[2] Ebrahimi S. Farzalpour F. ''On Weakly Prime submodules'', Tamkang Journal of Mathematics 38 (3) (2007), 247 – 252.

[3] Darani A., Soheilnia F. ''2-Absorbing and Weakly 2-Absorbing submodules''. Tahi Journal of Mathematic , 9 , ( 2011 ) , 577 – 584 .

[4] Muntaha A. R. '' Quasi-Prime Modules and Quasi-Prime submodules'', M.Sc. Thesis, Baghdad university 1999 .

[5] Moradi S., Azizi A. ''Weakly 2-Absorbing Submoduie of Modules''. Turkish Journal of Mathematics , 40 , ( 2016 ) 350 – 364 .

[6] Anderson D., Bataineh M. '' Generalization of Prime Ideals '' comm . Algebra , 39 (2008 ) 686 – 696