Resistive Switching in the Cu/Si/SiO2/CdS/CuO/Cu Structure Fabricated at Room Temperature

Main Article Content

Haneafa Yahya Najm

Abstract

This work investigates CuO and CdS (material as nanoparticles mixed with a polymer (Cellulose Acetate)) – based ReRAM having stable resistive switching. It also investigates a new composition of a memory which  is constructed with silicon as a pedestal, silicon oxide SiO2 thermally grown on it and active materials that include of (CuO material as nanoparticles mixed with a polymer (Cellulose Acetate) layer) sandwiched between two electrodes using similar material and CdS layer as a semiconductor n-type. ReRAM memory cell is a structure such as a capacitor that is consist of semiconducting transition metal oxides or insulating exhibiting inverses  resistive switching on applying voltage pulses .The mixed material was coated as a thin layer by using Spin-Coating Instrument. this structure can be switched between low- resistance state (LRS) and high resistance state(HRS);therefore, The present structure behaves as unipolar resistive switching. The resistive behavior will be affected by the top electrode area. This effect  occurs more in big top electrode area (TEL=15.896mm2) where, the constituting voltage (Vforming) is inversely  proportionately  with respect to the top electrode area (A) .Also the (HRS) is inversely proportioned with the (A). The complying current (Icc=20mA) is used for protect the device from the damageable. The fabricated composition has many prosperities, such as Vforming = 7.3volt, Vset = 4volt, VReset = 1.7volt, Finally, the resistance ratio (Rratio) is proportioned directly with the(A) and equal Rratio=157.48 so, this ratio is enough to distinguish amongst the low resistance and the high resistance in a circuit design

Article Details

How to Cite
Haneafa Yahya Najm. (2022). Resistive Switching in the Cu/Si/SiO2/CdS/CuO/Cu Structure Fabricated at Room Temperature . Tikrit Journal of Pure Science, 27(1), 77–83. https://doi.org/10.25130/tjps.v27i1.83
Section
Articles

References

[1] Chinonso, E. (2019). Design Principles of SRAM Memory in Nano-CMOS Technologies. International Journal of Computer Applications, 178(11), 5-11.

[2] Kim, S. K., & Popovici, M. (2018). Future of dynamic random-access memory as main memory. MRS Bulletin, 43(5), 334-339.

[3] Bahn, H., & Cho, K. (2020). Implications of NVM Based Storage on Memory Subsystem Management. Applied Sciences, 10(3), 999.

[ 4 ] Kahng, K., & Sze, S. (1967). A floating gate and its application to memory devices. IEEE Transactions on Electron Devices, 14(9), 629-629.

[5] Burr, G. W., Kurdi, B. N., Scott, J. C., Lam, C. H., Gopalakrishnan, K., & Shenoy, R. S. (2008). Overview of candidate device technologies for storage-class memory. IBM Journal of Research and Development, 52(4.5), 449-464.

[6] Scott, J., & Bozano, L. (2007). Nonvolatile Memory Elements Based on Organic Materials. Advanced Materials, 19(11), 1452-1463.

[7] Jeong, K., & Kahng, A. B. (2009). A power-constrained MPU roadmap for the International Technology Roadmap for Semiconductors (ITRS). 2009 International SoC Design Conference (ISOCC).

[8] Asamitsu, A., Tomioka, Y., Kuwahara, H., & Tokura, Y. (1997). Current switching of resistive states in magnetoresistive manganites. Nature, 388(6637), 50-52.

[9] Sawa, A. (2008). Resistive switching in transition metal oxides. Materials Today, 11(6), 28-36.

[10] Potember, R. S., Poehler, T. O., & Cowan, D. O. (1979). Electrical switching and memory phenomena in Cu‐TCNQ thin films. Applied Physics Letters, 34(6), 405-407.

[11] Tang, A., Teng, F., Hou, Y., Wang, Y., Tan, F., Qu, S., & Wang, Z. (2010). Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol. Applied Physics Letters, 96(16), 163112.

[12] Yoshida, C., Tsunoda, K., Noshiro, H., & Sugiyama, Y. (2007). High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application. Applied Physics Letters, 91(22), 223510.

[13] Hickmott, T. W. (1962). Low‐Frequency Negative Resistance in Thin Anodic Oxide Films. Journal of Applied Physics, 33(9), 2669-2682.

[14] Yang, Y. C., Pan, F., Liu, Q., Liu, M., & Zeng, F. (2009). Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Letters, 9(4), 1636-1643.

[15] Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., & Chen, J. (2008). Resistive switching memory effect of ZrO[sub 2] films with Zr[sup ] implanted. Applied Physics Letters, 92(1), 012117.

[16] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R. S. (2008). Memristive switching mechanism for

Metal /oxide /metal nanodevices. Nature Nanotechnology, 3(7), 429-433..

[17] Asamitsu, A., Tomioka, Y., Kuwahara, H., & Tokura, Y. (1997). Current switching of resistive states in magnetoresistive manganites. Nature, 388(6637), 50-52.

[18] Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., . . . Tiedke, S. (2005). Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 98(3), 033715.

[19] Inoue, I. H., Yasuda, S., Akinaga, H., & Takagi, H. (2008). Nonpolar resistance switching of metal/binary – transition - metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Physical Review B, 77(3).

[20] Fujiwara, K., Nemoto, T., Rozenberg, M. J., Nakamura, Y., & Takagi, H. (2008). Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices. Japanese Journal of Applied Physics, 47(8), 6266-6271. [21] Tang, A., Teng, F., Hou, Y., Wang, Y., Tan, F., Qu, S., & Wang, Z. (2010). Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol. Applied Physics Letters, 96(16), 163112.

[22] Mangrulkar, P. A., Joshi, M. M., Tijare, S. N., Polshettiwar, V., Labhsetwar, N. K., & Rayalu, S. S. (2012). Nano cobalt oxides for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 37(13), 10462-10466.

[23] Seo, S., Lee, M. J., Kim, D. C., Ahn, S. E., Park, B., Kim, Y. S., . .. Park, B. H. (2005). Electrode dependence of resistance switching in polycrystalline NiO films. Applied Physics Letters, 87(26), 263507.

[24] Deora, S. (2015). Reliability challenges in resistive switching memories technology. 2015 IEEE International Integrated Reliability Workshop (IIRW).

[25] Waser, R., Dittmann, R., Staikov, G., & Szot, K. (2009). Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 21(25-26), 2632-2663.

[26] Guan, W., Long, S., Liu, Q., Liu, M., & Wang, W. (2008). Nonpolar Nonvolatile Resistive Switching in Cu Doped $hbox{ZrO}_{2}$. IEEE Electron Device Letters, 29(5), 434-437.