Determination of the inhibitory activity of silver nanoparticles against some pathogenic multi-antibiotic resistant bacterial species
Main Article Content
Abstract
The study was done to determine the inhibitory effect of silver nanoparticles synthesed by the filamentous fungus Fusarium mangiferae against some multidrugs resistant pathogenic bacteria which were taken from the Central Laboratory of Sulaymaniyah Teaching Hospital.Silver nanoparticles showed their inhibitory effect on the various bacterial species in this study by two methods Wich are the well diffusion method and inhibition growth. Nanoparticles of silver showed inhibitory areas by Well diffusion method against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Proteus mirabilis.
The Diameter of inhibition zones of the above mentioned bacteria were (15.25, 20.5, 17.75.16) mm while The method of inhibition of growth had shown that nanoparticles effective against the above bacterial species at concentrations (50, 50, 50, 100)% respectively through the lack of growth of the colonies on the surface of the nutrient agar. Therefore, the use of nanoparticles from some metals is the best solution for the treatment of infectious diseases due to the effective inhibiting properties of these nanoparticles against bacteria without negative side effects.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.
References
(1)- Naveen, K.S.H.; Kumar, G.; Karthik, L. & Rao,
K.V.B. (2010). Extracellular biosynthesis of silver
nanoparticles using the filamentous fungus
Penicillium spp. Arch. Appl. Sci. Res.2.P: 161–167.
)2( - Mansur, H.S.; Grieser, F.; Marychurch, M.S.;
Biggs, S.; Urquhart, R.S. & Furlong, D. (1995).
Photoelectrochemical properties of 'q-state' cds
particles in arachidic acid langmuirblodgett films.J
Chem Soc Faraday Trans.91.P:665-672.
)3( -Ravindran, A.; Chandran, P. & Khan, S.S.
(2013). Biofunctionalized silver nanoparticles:
advances and prospects. Colloids Surf B:
Biointerfaces. 105.P:342–352.
)4(-Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma,
A.R. & Singh, R.P. (2011). Biosynthesis of silver
nanoparticles using Ocimum sanctum (Tulsi) leaf
extract and screening its antimicrobial activity, J.
Nanopart. Res. 13.P:2981–2988،
)5(- Thakkar, K.N. & Mhatre, S.S. (2010). Parikh,
R.Y. Biological synthesis of metallic nanoparticles.
Nanomed. Nanotechnol.6.P:257–262.
)6(- Rai, M.; Yada, A.; Bridge, P. & Gade, A. (2009).
Myconanotechnology: A new and emerging science,
in Applied Mycology. ed by Rai MK and Bridge PD.
CAB International Publishers, New York.P:258-267.
)7(- Rex, J.H.; Alexander, B.D.; Andes, D.;
Arthington - Skaggs, B.; Brown, S.D.; Chaturvedi,
V.; Ghannoum, M.A.; Espinel - Ingroff, A.; Knapp,
C.C.; Zeichner, L.P.; faller, M.A.; Sheehan, D.J. &
Walsh, T.J. (2008). Reference method for broth
dilution antifungal susceptibility testing of yeasts.
Approved Standard-Third Edition. Clinical and
Laboratory Standards Instituts C.a. L.S. Wayne,
Pennsylvania, USA. 28.(14):P:1-25.
)8( - Arvizo, R.R. (2012). Intrinsic therapeutic
applications of noble metal nanoparticles:past,
present and future.Chem.Soc.Rev.41.P: 29-43.
)9(- Sosa, D.J.; Byarugaba, D.K.; Amabile, C. &
Hsueh, P. (2010). In: Antimicrobial Resistance in
Developing Counties, vol. 97. Springer, New York.
P: 908–923.
)1،( - Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D. &
Liang, H. (2012). Antibacterial activities of gold and
silver nanoparticles against Escherichia coli and
Bacillus Calmette - Gue´rin. J. Nanobiotechnol. 10.P:
19–28.
(11)- Ahmad, A.; Mukherjee, P.; Senapati, S.;
Mandal, D.; Khan, M. I.; Kumar, R. & Sastry, M.
(2003). Extracellular biosynthesis of silver
nanoparticles using the fungus Fusarium oxysporum,
J. Colloids and Surfaces B: Biointerfaces. 28(4):
P:313-318،
(12)- Forbes, B.A.; Sahm, D.F. & Weissfeld, A.S.
(2007). Baily and Scott's Diagnostic Microbiology.
12thed. Mosby (Elsevier). USA.P:171-178.
)13(- Michael, J. (2011). A Photographic Atlas for the
Microbiology Laboratory 4thed.USA.
(14)-Rajesha, S.; Dharanishanthib, V. & Vinoth
Kannac, A. (2015). Antibacterial mechanism of
biogenic silver nanoparticles of Lactobacillus
acidophilus. J. Experi. Nanoscie.10(15):P:1143-1152.
(15)- Namasivayam, S.j. K.R.; Jayakumar, D.;
Kumar, R. & Bharani, R.S.A. (2015). Antibacterial
and anticancerous biocompatible silver nanoparticles
synthesised from the cold-tolerant strain of Spirulina
platensis. Journal of Coastal Life Medicine. 3(4): P:
265-272.
(16)- Salem, W.; Deborah, R.; Leitnera, F.G.; Zingla,
G.S.; Ruth, P.; Goessler, W.; Reidla, J. & Schild, S.
(2015). Antibacterial activity of silver and zinc
nanoparticles against Vibrio cholerae and enterotoxic
Escherichia coli. Int .J. Medical Microbiol. 305.P:85-
95.
(17)- Karthickraja, S. & Avimanyu, N. (2011).Silver
nanoparticle synthesis from Lecanicillium lecan II and
evalutionary treatment on cotton fabrics by measuring
their improved antibacterial activity with antibiotics
against Staphylococcus aureus (ATCC 29213) and
E.coli (ATCC 25922) strains. International Journal of
Pharmacy and Pharmaceutical Sciences . 3.P:190-195
(18)- Thangapandiyan, S. (2016). Microbial medlated
silver nanoparticles by Pseudomonas aeruginosa and
their potent antibacterial activity combination with
commercial antibiotics. World. J. Phaema. Ceutal
Science. 5(3): P:703-714.
(19)- Patil, S.R. (2014). Antibacterial activity of
Silver Nanoparticles synthesized from Fusarium
semitectum and Green extracts .I.J.S.E.R. 2(3):P140-
145.
(20)- Chandrakanth, R.K.; Ashajyothi, C.; Oli, A.;
K.& Prabhurajeshwar, C. (2014). Potential
Bactericidal Effect of Silver Nanoparticles
Synthesised from Enterococcus Species. Orient. J.
Chem. 30(3): P:1253-1262.
(21)- Zaki, H.N. and Husain, Z (2016). Enhanced
antibacterial and anti - biofilm activities of
biosynthesized silver nanoparticles against
pathogenic bacteria. Journal of Gene C and
Environmental Resources Conserva on. 4(3):P:197-
203.
(22)- AbdelHafez, E.H.; Ahmed, E.A.; Abbas, H.A.
& Salah ElD in, R.A. (2015). Efficacy of Antibiotics
Combined with Biosynthesized Silver Nanoparticles
on some Pathogenic Bacteria .International Journal of
Science and Research (IJSR).78(96):P:1294-1303.
(23)- Hussain, M.A.; Shah, A.; Jantan, I.; Shah, M.R.;
Tahir, M.N.; Ahmad, R. & Bukhari, S.N.(2014).
Hydroxypropy cellulose as a novel green reservoir for
the synthesis, stabilization, and storage of silver
nanoparticles. Open access peer-reviewed scientific
and medical journals. original research. 10(1):
P:2079-2088.
(24)- Shelar, G.B. & Chavan. A.M.(2014). Fusarium
semitectum mediated extracellular synthesis of silver
nanoparticles and their antibacterial activity.
International Journal of Biomedical And Advance
Research. 05 (07):P:349-351.
(25)- Packia Lekshmi, N.C.; J. Kalavathy, M.;
Viveka, S.; Jeeva, S. & Brindha, J.R. (2013).
Antibacterial activity of silver nanoparticles
synthesized extracellularly by soil micro flora.
Turkish Journal of Science & Technology. 8(1):P:23-
28.
(26)- Al-Bahrani, R.M. & Ghafil, J.A. (2016).
Evaluation of inhibition activity of silver
nanoparticles activity against pathogenic bacteria.
Iraqi Journal of Science.57(3):P:2203-2207.
(27)- Humberto, H.; Lara, V.; Ayala-Nunez, N.V.
Carmen, L.D. Ixtepan, T. & Cristina, R.P. (2010).
Bactericidal effect of silver nanoparticles against
multidrug-resistant bacteria. World. J. Micro.
Biotechnol .26:P:615-621
(28)- Wady, A.F.; Machado, A.L.; Foggi, C.C.;
Zamperini, C.A.; Zucolotto, V.; Moffa, E.B. &
Vergani, C.E. (2014). Effect of a Silver Nanoparticles
Solution onStaphylococcus aureus and Candida spp.
Journal of Nanomaterials. Research Article. 545
(279):P:7.
(29)-Ansari, M.A.; Khan, H.M.; Khan, A.A.; Malik,
A.; Sultan, A.; Shahid, M.; Shujatullah, F. & Azam,
A. (2011). Evaluation of antibacterial activity of
silver nanoparticles against MSSA and MSRA on
isolates from skin infections. Biol. J. Med. 3:P:141-
146.
(30)-Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.;
Ramachandrarao, P. & Dash, D. (2007). Characteri
ation of enhanced antibacterial effects of novel silver
nanoparticles. Nanotechnology.18(22):P:1–9.
(31)-Ansari, M.A.; Khan, H.M.; Khan, A.A.;
Cameotra, S.S. & Alzohairy, M.A. (2015). Anti
biofilm efficacy of silver nanoparticles against
MRSA and MRSE isolated from wounds in a tertiary
care hospital. Indian J. Med. Microbiol.33.P:101–
109.
(32)- Thomas, R.; Soumya, K.R.; Mathew, J. &
Radhakrishnan, E.K. (2015). Inhibitory effect of
silver nanoparticle fabricated urinary catheter on
colonization efficiency of Coagulase Negative
Staphylococci. J. Photochem. Photobiol B.(149):P:68-
77.
(33)- Lkhagvajav, N.; Yasab,I. C.; elikc, E.;
Koizhaiganova, M. & Saria, O. (2011). Antimicrobial
activity of colloidal silver nanoparticles prepared by
sol gel method. Dig. J. Nanomater Biostruct. 6.P:
149–154.
(34)-Chudasama, B.; Vala, A.K.; Andhariya, N.;
Mehta, R.V. & Upadhyay, R.V. (2010). Highly
bacterial resistant silver nanoparticles: synthesis and
antibacterial activities. J. Nano. Res. View at
Publisher. View at Google Scholar. 12(5):P:1677–
1685.
(35)- Marambio - Jones, C.& Hoek, E.M.V.(2010).A
review of the antibacterial effects of silver
nanomaterials and potential implications for human
health and the environment. Journal of Nanoparticle
Research.12.P:1531-1551.
(36)- Nel, A. E.; Meadler, L.; Velegol, D.; Xia, T.;
Hoek, E. M. V.& Somasundaran, P. (2009).
Understanding biophysicochemical interactions at the
nano-bio interface. Nature Materials, 8.P:543-557.
(37)- Sondi, I. & Salopek - Sondi, B. (2004). Silver
nanoparticles as antimicrobial agent: a case study on
E. coli as a model for Gram-negative bacteria. Journal
of Colloid and Interface Science.27(5):P:177-182.
(38)-Su, H. L.; Chou, C. C.;Hung, D. J.; Lin, S. H.;
Pao, I. C. & Lin, J. H. (2009). The disruption of
bacterial membrane integrity through ROS generation
induced by nanohybrids of silver and clay.
Biomaterials. 30.P:5979-5987.
(39)- McDonnell, G. & A.D. Russell. (1999).
Antisptics and disinfectants activity action and
resistance. J. Clin. Microbiol. Rev.(12):P:147-179.
(40)- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.&
Tsuchido, T.(2003).Mode of bacterial action of silver
zeolite and its comparison with that of silver nitrate.
Appl. Environ. Microbiol.69(7):P:4278–4281.
)41(- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.;
Holt, K.; Kouri, J.B. & Tapia, J. (2005). The
bactericidal effect of silver nanoparticles.
Nanotechnology.16(23):P:46–2353.
(42)- Gogoi, S.K.; Gopinath, P.; Paul, A.; Ramesh,
A.; Ghosh, S.S. & Chattopadhyay, A. (2006). Green
Fluorescent Protein - Expressing Escherichia coli as a
Model System for Investigating the Antimicrobial
Activities of Silver Nanoparticles. Langmuir 22.P:
9322–9328.