Determination of the inhibitory activity of silver nanoparticles against some pathogenic multi-antibiotic resistant bacterial species

Main Article Content

Riyam F. Saleh
Mohammed N. Maaroof
Haider M. Hamzah

Abstract

The study was done to determine the inhibitory effect of silver nanoparticles synthesed by the filamentous fungus Fusarium mangiferae against some multidrugs resistant pathogenic bacteria which were taken from the Central Laboratory of Sulaymaniyah Teaching Hospital.Silver nanoparticles showed their inhibitory effect on the various bacterial species in this study by two methods Wich are the well diffusion method and inhibition growth. Nanoparticles of silver showed inhibitory areas by Well diffusion method against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Proteus mirabilis.


The Diameter of inhibition zones of the above mentioned bacteria were (15.25, 20.5, 17.75.16) mm while The method of inhibition of growth had shown that nanoparticles effective against the above bacterial species at concentrations (50, 50, 50, 100)% respectively through the lack of growth of the colonies on the surface of the nutrient agar. Therefore, the use of nanoparticles from some metals is the best solution for the treatment of infectious diseases due to the effective inhibiting properties of these nanoparticles against bacteria without negative side effects.

Article Details

How to Cite
Riyam F. Saleh, Mohammed N. Maaroof, & Haider M. Hamzah. (2023). Determination of the inhibitory activity of silver nanoparticles against some pathogenic multi-antibiotic resistant bacterial species. Tikrit Journal of Pure Science, 22(10), 38–45. https://doi.org/10.25130/tjps.v22i10.908
Section
Articles

References

(1)- Naveen, K.S.H.; Kumar, G.; Karthik, L. & Rao,

K.V.B. (2010). Extracellular biosynthesis of silver

nanoparticles using the filamentous fungus

Penicillium spp. Arch. Appl. Sci. Res.2.P: 161–167.

)2( - Mansur, H.S.; Grieser, F.; Marychurch, M.S.;

Biggs, S.; Urquhart, R.S. & Furlong, D. (1995).

Photoelectrochemical properties of 'q-state' cds

particles in arachidic acid langmuirblodgett films.J

Chem Soc Faraday Trans.91.P:665-672.

)3( -Ravindran, A.; Chandran, P. & Khan, S.S.

(2013). Biofunctionalized silver nanoparticles:

advances and prospects. Colloids Surf B:

Biointerfaces. 105.P:342–352.

)4(-Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma,

A.R. & Singh, R.P. (2011). Biosynthesis of silver

nanoparticles using Ocimum sanctum (Tulsi) leaf

extract and screening its antimicrobial activity, J.

Nanopart. Res. 13.P:2981–2988،

)5(- Thakkar, K.N. & Mhatre, S.S. (2010). Parikh,

R.Y. Biological synthesis of metallic nanoparticles.

Nanomed. Nanotechnol.6.P:257–262.

)6(- Rai, M.; Yada, A.; Bridge, P. & Gade, A. (2009).

Myconanotechnology: A new and emerging science,

in Applied Mycology. ed by Rai MK and Bridge PD.

CAB International Publishers, New York.P:258-267.

)7(- Rex, J.H.; Alexander, B.D.; Andes, D.;

Arthington - Skaggs, B.; Brown, S.D.; Chaturvedi,

V.; Ghannoum, M.A.; Espinel - Ingroff, A.; Knapp,

C.C.; Zeichner, L.P.; faller, M.A.; Sheehan, D.J. &

Walsh, T.J. (2008). Reference method for broth

dilution antifungal susceptibility testing of yeasts.

Approved Standard-Third Edition. Clinical and

Laboratory Standards Instituts C.a. L.S. Wayne,

Pennsylvania, USA. 28.(14):P:1-25.

)8( - Arvizo, R.R. (2012). Intrinsic therapeutic

applications of noble metal nanoparticles:past,

present and future.Chem.Soc.Rev.41.P: 29-43.

)9(- Sosa, D.J.; Byarugaba, D.K.; Amabile, C. &

Hsueh, P. (2010). In: Antimicrobial Resistance in

Developing Counties, vol. 97. Springer, New York.

P: 908–923.

)1،( - Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D. &

Liang, H. (2012). Antibacterial activities of gold and

silver nanoparticles against Escherichia coli and

Bacillus Calmette - Gue´rin. J. Nanobiotechnol. 10.P:

19–28.

(11)- Ahmad, A.; Mukherjee, P.; Senapati, S.;

Mandal, D.; Khan, M. I.; Kumar, R. & Sastry, M.

(2003). Extracellular biosynthesis of silver

nanoparticles using the fungus Fusarium oxysporum,

J. Colloids and Surfaces B: Biointerfaces. 28(4):

P:313-318،

(12)- Forbes, B.A.; Sahm, D.F. & Weissfeld, A.S.

(2007). Baily and Scott's Diagnostic Microbiology.

12thed. Mosby (Elsevier). USA.P:171-178.

)13(- Michael, J. (2011). A Photographic Atlas for the

Microbiology Laboratory 4thed.USA.

(14)-Rajesha, S.; Dharanishanthib, V. & Vinoth

Kannac, A. (2015). Antibacterial mechanism of

biogenic silver nanoparticles of Lactobacillus

acidophilus. J. Experi. Nanoscie.10(15):P:1143-1152.

(15)- Namasivayam, S.j. K.R.; Jayakumar, D.;

Kumar, R. & Bharani, R.S.A. (2015). Antibacterial

and anticancerous biocompatible silver nanoparticles

synthesised from the cold-tolerant strain of Spirulina

platensis. Journal of Coastal Life Medicine. 3(4): P:

265-272.

(16)- Salem, W.; Deborah, R.; Leitnera, F.G.; Zingla,

G.S.; Ruth, P.; Goessler, W.; Reidla, J. & Schild, S.

(2015). Antibacterial activity of silver and zinc

nanoparticles against Vibrio cholerae and enterotoxic

Escherichia coli. Int .J. Medical Microbiol. 305.P:85-

95.

(17)- Karthickraja, S. & Avimanyu, N. (2011).Silver

nanoparticle synthesis from Lecanicillium lecan II and

evalutionary treatment on cotton fabrics by measuring

their improved antibacterial activity with antibiotics

against Staphylococcus aureus (ATCC 29213) and

E.coli (ATCC 25922) strains. International Journal of

Pharmacy and Pharmaceutical Sciences . 3.P:190-195

(18)- Thangapandiyan, S. (2016). Microbial medlated

silver nanoparticles by Pseudomonas aeruginosa and

their potent antibacterial activity combination with

commercial antibiotics. World. J. Phaema. Ceutal

Science. 5(3): P:703-714.

(19)- Patil, S.R. (2014). Antibacterial activity of

Silver Nanoparticles synthesized from Fusarium

semitectum and Green extracts .I.J.S.E.R. 2(3):P140-

145.

(20)- Chandrakanth, R.K.; Ashajyothi, C.; Oli, A.;

K.& Prabhurajeshwar, C. (2014). Potential

Bactericidal Effect of Silver Nanoparticles

Synthesised from Enterococcus Species. Orient. J.

Chem. 30(3): P:1253-1262.

(21)- Zaki, H.N. and Husain, Z (2016). Enhanced

antibacterial and anti - biofilm activities of

biosynthesized silver nanoparticles against

pathogenic bacteria. Journal of Gene C and

Environmental Resources Conserva on. 4(3):P:197-

203.

(22)- AbdelHafez, E.H.; Ahmed, E.A.; Abbas, H.A.

& Salah ElD in, R.A. (2015). Efficacy of Antibiotics

Combined with Biosynthesized Silver Nanoparticles

on some Pathogenic Bacteria .International Journal of

Science and Research (IJSR).78(96):P:1294-1303.

(23)- Hussain, M.A.; Shah, A.; Jantan, I.; Shah, M.R.;

Tahir, M.N.; Ahmad, R. & Bukhari, S.N.(2014).

Hydroxypropy cellulose as a novel green reservoir for

the synthesis, stabilization, and storage of silver

nanoparticles. Open access peer-reviewed scientific

and medical journals. original research. 10(1):

P:2079-2088.

(24)- Shelar, G.B. & Chavan. A.M.(2014). Fusarium

semitectum mediated extracellular synthesis of silver

nanoparticles and their antibacterial activity.

International Journal of Biomedical And Advance

Research. 05 (07):P:349-351.

(25)- Packia Lekshmi, N.C.; J. Kalavathy, M.;

Viveka, S.; Jeeva, S. & Brindha, J.R. (2013).

Antibacterial activity of silver nanoparticles

synthesized extracellularly by soil micro flora.

Turkish Journal of Science & Technology. 8(1):P:23-

28.

(26)- Al-Bahrani, R.M. & Ghafil, J.A. (2016).

Evaluation of inhibition activity of silver

nanoparticles activity against pathogenic bacteria.

Iraqi Journal of Science.57(3):P:2203-2207.

(27)- Humberto, H.; Lara, V.; Ayala-Nunez, N.V.

Carmen, L.D. Ixtepan, T. & Cristina, R.P. (2010).

Bactericidal effect of silver nanoparticles against

multidrug-resistant bacteria. World. J. Micro.

Biotechnol .26:P:615-621

(28)- Wady, A.F.; Machado, A.L.; Foggi, C.C.;

Zamperini, C.A.; Zucolotto, V.; Moffa, E.B. &

Vergani, C.E. (2014). Effect of a Silver Nanoparticles

Solution onStaphylococcus aureus and Candida spp.

Journal of Nanomaterials. Research Article. 545

(279):P:7.

(29)-Ansari, M.A.; Khan, H.M.; Khan, A.A.; Malik,

A.; Sultan, A.; Shahid, M.; Shujatullah, F. & Azam,

A. (2011). Evaluation of antibacterial activity of

silver nanoparticles against MSSA and MSRA on

isolates from skin infections. Biol. J. Med. 3:P:141-

146.

(30)-Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.;

Ramachandrarao, P. & Dash, D. (2007). Characteri

ation of enhanced antibacterial effects of novel silver

nanoparticles. Nanotechnology.18(22):P:1–9.

(31)-Ansari, M.A.; Khan, H.M.; Khan, A.A.;

Cameotra, S.S. & Alzohairy, M.A. (2015). Anti

biofilm efficacy of silver nanoparticles against

MRSA and MRSE isolated from wounds in a tertiary

care hospital. Indian J. Med. Microbiol.33.P:101–

109.

(32)- Thomas, R.; Soumya, K.R.; Mathew, J. &

Radhakrishnan, E.K. (2015). Inhibitory effect of

silver nanoparticle fabricated urinary catheter on

colonization efficiency of Coagulase Negative

Staphylococci. J. Photochem. Photobiol B.(149):P:68-

77.

(33)- Lkhagvajav, N.; Yasab,I. C.; elikc, E.;

Koizhaiganova, M. & Saria, O. (2011). Antimicrobial

activity of colloidal silver nanoparticles prepared by

sol gel method. Dig. J. Nanomater Biostruct. 6.P:

149–154.

(34)-Chudasama, B.; Vala, A.K.; Andhariya, N.;

Mehta, R.V. & Upadhyay, R.V. (2010). Highly

bacterial resistant silver nanoparticles: synthesis and

antibacterial activities. J. Nano. Res. View at

Publisher. View at Google Scholar. 12(5):P:1677–

1685.

(35)- Marambio - Jones, C.& Hoek, E.M.V.(2010).A

review of the antibacterial effects of silver

nanomaterials and potential implications for human

health and the environment. Journal of Nanoparticle

Research.12.P:1531-1551.

(36)- Nel, A. E.; Meadler, L.; Velegol, D.; Xia, T.;

Hoek, E. M. V.& Somasundaran, P. (2009).

Understanding biophysicochemical interactions at the

nano-bio interface. Nature Materials, 8.P:543-557.

(37)- Sondi, I. & Salopek - Sondi, B. (2004). Silver

nanoparticles as antimicrobial agent: a case study on

E. coli as a model for Gram-negative bacteria. Journal

of Colloid and Interface Science.27(5):P:177-182.

(38)-Su, H. L.; Chou, C. C.;Hung, D. J.; Lin, S. H.;

Pao, I. C. & Lin, J. H. (2009). The disruption of

bacterial membrane integrity through ROS generation

induced by nanohybrids of silver and clay.

Biomaterials. 30.P:5979-5987.

(39)- McDonnell, G. & A.D. Russell. (1999).

Antisptics and disinfectants activity action and

resistance. J. Clin. Microbiol. Rev.(12):P:147-179.

(40)- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.&

Tsuchido, T.(2003).Mode of bacterial action of silver

zeolite and its comparison with that of silver nitrate.

Appl. Environ. Microbiol.69(7):P:4278–4281.

)41(- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.;

Holt, K.; Kouri, J.B. & Tapia, J. (2005). The

bactericidal effect of silver nanoparticles.

Nanotechnology.16(23):P:46–2353.

(42)- Gogoi, S.K.; Gopinath, P.; Paul, A.; Ramesh,

A.; Ghosh, S.S. & Chattopadhyay, A. (2006). Green

Fluorescent Protein - Expressing Escherichia coli as a

Model System for Investigating the Antimicrobial

Activities of Silver Nanoparticles. Langmuir 22.P:

9322–9328.