Strong Essential Submodules And Strong Uniform Modules

Main Article Content

Nada Khalid Abdullah

Abstract

A non-zero submodule K of an R-module M is called essential if K  L  (0)  for each non-zero submodule L of M . And an R-module M is called uniform if each non-zero submodule of M is an essential . In this paper we give generalization of essential submodule and uniform module that are strong essential submodule and strong uniform module. A non-zero submodule N of M is called strong essential if  N  P  (0) for each non-zero strongly prime submodule P of M . And an R-module M is called strong uniform if each non-zero submodule of M is a strong essential .

Article Details

How to Cite
Nada Khalid Abdullah. (2023). Strong Essential Submodules And Strong Uniform Modules. Tikrit Journal of Pure Science, 21(1), 112–117. https://doi.org/10.25130/tjps.v21i1.960
Section
Articles

References

1/ Abdullah, N. K. (2005), Semi-essential

submodules and semi-uniform modules , M. Sc.

Thesis, Univ. of Tikrit .

2/ Ahmed, A. A. (1992), On submodules of

multiplication modules, M. Sc. Thesis , Univ. of

Baghdad .

3/ Ahmed, M. A. (2009), Weak essential submodules

, Dep. of Math. Um-Salama Sci. Journal , Vol. 6 (1) ,

p. 214-221 .

4/ Athab, E. A. (1996), Prime and semi prime

submodules , M. Sc. Thesis , Univ. of Baghdad .

5/ Dauns, J. and McDonald, B. R. (1980), Prime

modules and one sided ideals in ring theory and

Algebra III, Proceedings of the third Oklahoma

conference : 301-344 .

6/ Elbast , A. and Smith , P. F. (1988) , Multiplication

modules , Comm. Algebra Vol. 16 : 755-774 .

7/ Goodearl, K. R. (1976), Ring theory, Marcel

Dekker , New York .

8/ Hedstron, J. R. and Houston, E. G. (1978) , Pseudo

valuation domains , Pac J. of Math. , 75(1) : 137-147

.

9/ Kasch, F. (1982), Modules and rings , Academic

press, London .

10/ Lu , C. P. (1984) , Prime submodules of modules ,

Comment Math. Univ. St. Paul. 33 : 61-69 .

11/ Moghaderi , J. and Nekooei , R. (2010) , Strongly

prime submodules and pseudo-valuation modules ,

Rec. 31 May , com. Math. Subject class.: 31c13c99 .

12/ Naghipour, A. R. (2000), Strongly prime submodules, Dep. Of Math. Univ. of Shahrekord, Iran, P. 1-9 .

13/ Naoum, A. G. and Hadi, I. M. A. (2009), On strongly prime submodules, Iraqi Journal of science , P. 35-40 .

14/ Zimmermann Huisgen, B. (1975), Endomorphism rings of self generators, pacific, J. Math. 61 : 587-602