New A hybrid Hestenes-Stiefel and Dai-Yuan conjugate gradient algorithms for unconstrained optimization

Main Article Content

Khalil K. Abbo
Hisham M. Khudhur

Abstract

In this Research we developed a New Hybrid method of conjugate gradient type, this Method depends basically on combining Hestenes-Stiefel and Dai-Yuan algorithms by using spectral direction conjugate algorithm, which is developed by Yang Z & Kairong W [19]. The developed method becomes converged by assuming some hypothesis. The numerical results show the efficiency of the developed method for solving test Unconstrained Nonlinear Optimization problems.

Article Details

How to Cite
Khalil K. Abbo, & Hisham M. Khudhur. (2023). New A hybrid Hestenes-Stiefel and Dai-Yuan conjugate gradient algorithms for unconstrained optimization. Tikrit Journal of Pure Science, 21(1), 118–123. https://doi.org/10.25130/tjps.v21i1.961
Section
Articles

References

1] خضر, حميد محمد صادق "خوارزميات مطورة للتدرج المترافق

في حل مسائل التصغيرية غير المقيدة" رسالة ماجستير, كلية علوم

الحاسوب والرياضيات جامعة الموصل 2013 .

[2] Abbas Y. Al-Bayati, Abdul-Ghafoor J. and Khalil A. (2009) "Two- Version of conjugate gradient algorithm Based on conjugacy Conditions for unconstrained optimization". American J. of Economics and Business Administration 1, (2).

[3] Al-Baali M. (1985) "Descent property and global convergence of the Fletcher and Revees Method with inexact line search". SIAM J. Numer. Anal 5.

[4] Andrei, N. (2010) "Accelerated scaled memory less BFGS preconditioned conjugate Gradient algorithm for unconstrained optimization" European J. Of Operational Research. 204.

[5] Andrei, N. (2008) "40 conjugate gradient algorithm for unconstrained Optimization" ICI. Technical Report No. 13108.

[6] Andrei N. (2008), "An Unconstrained Optimization test function collection". Adv. Model. Optimization. 10. pp.147-161.

[7] Dai, Y. and Yuan, Y. (1999) "A Nonlinear conjugate gradient method with a strong global convergence property". SIAM J. Optim.,10.

[8] Dai Y. (2001) "New properties of anon-linear conjugate gradient method" Numer. Math. 89.

[9] Dai,Y. and Liao, L. (2001) "New conjugacy conditions and related non-linear CG methods" Appl. Math optim.,(43). Spring-verlag, New York.

[10] Dolan. E. D and Mor´e. J. J, "Benchmarking optimization software with performance profiles", Math. Programming, 91 (2002), pp. 201-213.

[11] Hager, W. and Zhang, H. (2006) "A survey of non-linear conjugate gradient methods" Pacific Journal of Op., 2.

[12] Khalil A. (2008) "New CG method for large-scale unconstrained optimization based on Nazareth theorem". Iraq J. of Statistical science, (13).

[13] Fletcher R. and Reeves G. (1964) "Function minimization by conjugate gradients" computer. Journal, Vol.(7).

[14] Tomizuka. H and Yabe. H, (2004). "A Hybrid Conjugate Gradient method for unconstrained Optimization".

[15] Powell, M. (1984),"Nonconvex minimization calculation and the conjugate gradient method", Numerical Analysis, Lecture Notes in Math., Vol. 1066, pp. 122-141.

[16] Pytlak R. (2009) "Conjugate Gradient Algorithms in Non-convex Optimization" Non-convex Optimization and It's Applications. V. 89, Springer-V.

[17] Touati-Ahmed, D. and Storey, C., (1990), "Efficient Hybrid Conjugate Gradient Techniques". Journal of Optimization Theory and Application (64), 379–397.

[18] Wolfe, M. (1978)."Numerical Methods For Unconstrained Optimization An Introduction". New York: Van Nostraned Reinhold

[19] Yang Z and Kairong W. (2012) ''Anew general form of conjugate gradient methods with guaranteed descent and strong global convergence properties'' Numer Algor 60.

[20] Zoutendijk, G. (1970) "Nonlinear programming, computational methods" In Integer and Nonlinear Programming, J. Abadie(Ed), North- Holand.